10,345 research outputs found

    Optimal State Discrimination Using Particle Statistics

    Full text link
    We present an application of particle statistics to the problem of optimal ambiguous discrimination of quantum states. The states to be discriminated are encoded in the internal degrees of freedom of identical particles, and we use the bunching and antibunching of the external degrees of freedom to discriminate between various internal states. We show that we can achieve the optimal single-shot discrimination probability using only the effects of particle statistics. We discuss interesting applications of our method to detecting entanglement and purifying mixed states. Our scheme can easily be implemented with the current technology

    Lower bounds on the dilation of plane spanners

    Full text link
    (I) We exhibit a set of 23 points in the plane that has dilation at least 1.43081.4308, improving the previously best lower bound of 1.41611.4161 for the worst-case dilation of plane spanners. (II) For every integer n13n\geq13, there exists an nn-element point set SS such that the degree 3 dilation of SS denoted by δ0(S,3) equals 1+3=2.7321\delta_0(S,3) \text{ equals } 1+\sqrt{3}=2.7321\ldots in the domain of plane geometric spanners. In the same domain, we show that for every integer n6n\geq6, there exists a an nn-element point set SS such that the degree 4 dilation of SS denoted by δ0(S,4) equals 1+(55)/2=2.1755\delta_0(S,4) \text{ equals } 1 + \sqrt{(5-\sqrt{5})/2}=2.1755\ldots The previous best lower bound of 1.41611.4161 holds for any degree. (III) For every integer n6n\geq6 , there exists an nn-element point set SS such that the stretch factor of the greedy triangulation of SS is at least 2.02682.0268.Comment: Revised definitions in the introduction; 23 pages, 15 figures; 2 table

    Galvanomagnetic Properties of Evaporated Tellurium Films

    Get PDF

    Semiconductor Materials Characterisation by Raman Spectroscopy

    Get PDF

    A Processor Core Model for Quantum Computing

    Get PDF
    We describe an architecture based on a processing 'core' where multiple qubits interact perpetually, and a separate 'store' where qubits exist in isolation. Computation consists of single qubit operations, swaps between the store and the core, and free evolution of the core. This enables computation using physical systems where the entangling interactions are 'always on'. Alternatively, for switchable systems our model constitutes a prescription for optimizing many-qubit gates. We discuss implementations of the quantum Fourier transform, Hamiltonian simulation, and quantum error correction.Comment: 5 pages, 2 figures; improved some arguments as suggested by a refere

    Kinetics of Reaction Between Substituted Benzoyl Chlorides & Anilines in Benzene

    Get PDF
    149-15

    Growth and optical properties of nanowires

    Get PDF
    The present paper reviews the growth mechanism, processes and optical properties of nanowires with special reference to ZnO. A brief description of free standing vertical nanowires of ZnO grown in our lab is also included

    Multi-level, multi-party singlets as ground states and their role in entanglement distribution

    Get PDF
    We show that a singlet of many multi-level quantum systems arises naturally as the ground state of a physically-motivated Hamiltonian. The Hamiltonian simply exchanges the states of nearest-neighbours in some network of qudits (d-level systems); the results are independent of the strength of the couplings or the network's topology. We show that local measurements on some of these qudits project the unmeasured qudits onto a smaller singlet, regardless of the choice of measurement basis at each measurement. It follows that the entanglement is highly persistent, and that through local measurements, a large amount of entanglement may be established between spatially-separated parties for subsequent use in distributed quantum computation.Comment: Corrected method for physical preparatio
    corecore