731 research outputs found

    Reynolds number effect on the velocity increment skewness in isotropic turbulence

    Get PDF
    Second and third order longitudinal structure functions and wavenumber spectra of isotropic turbulence are computed using the EDQNM model and compared to results of the multifractal formalism. At the highest Reynolds number available in windtunnel experiments, Rλ=2500R_\lambda=2500, both the multifractal model and EDQNM give power-law corrections to the inertial range scaling of the velocity increment skewness. For EDQNM, this correction is a finite Reynolds number effect, whereas for the multifractal formalism it is an intermittency correction that persists at any high Reynolds number. Furthermore, the two approaches yield realistic behavior of second and third order statistics of the velocity fluctuations in the dissipative and near-dissipative ranges. Similarities and differences are highlighted, in particular the Reynolds number dependence

    Reduction of mean-square advection in turbulent passive scalar mixing

    Full text link
    Direct numerical simulation data show that the variance of the coupling term in passive scalar advection by a random velocity field is smaller than it would be if the velocity and scalar fields were statistically independent. This effect is analogous to the "depression of nonlinearity" in hydrodynamic turbulence. We show that the trends observed in the numerical data are qualitatively consistent with the predictions of closure theories related to Kraichnan's direct interaction approximation. The phenomenon is demonstrated over a range of Prandtl numbers. In the inertial-convective range the depletion is approximately constant with respect to wavenumber. The effect is weaker in the Batchelor range

    New sustainable ternary copper phosphide thermoelectrics

    Get PDF
    Funding: R. J. Q. and J.-W. G. B. acknowledge the Leverhulme Trust (RPG-2020-177). A. D. H. acknowledges the EPSRC (EP/ R013004/1).The thermoelectric performance of ACuP (A = Mg and Ca) with abundant elements and low gravimetric density is reported. Both systems are p-type doped by intrinsic Cu vacancy defects, have large power factors and promising figures of merit, reaching zT = 0.5 at 800 K. This demonstrates that copper phosphides are a potential new class of thermoelectric materials for waste heat harvesting.Publisher PDFPeer reviewe

    Manual on the Human Rights to Safe Drinking Water and Sanitation for Practitioners

    Get PDF
    "The Manual highlights the human rights principles and criteria in relation to drinking water and sanitation. It explains the international legal obligations in terms of operational policies and practice that will support the progressive realisation of universal access. The Manual introduces a human rights perspective that will add value to informed decision making in the daily routine of operators, managers and regulators. It also encourages its readership to engage actively in national dialogues where the human rights to safe drinking water and sanitation are translated into national and local policies, laws and regulations. Creating such an enabling environment is, in fact, only the first step in the process towards progressive realisation. Allocation of roles and responsibilities is the next step, in an updated institutional and operational set up that helps apply a human rights lens to the process of reviewing and revising the essential functions of operators, service providers and regulators.

    Small Scale Response and Modeling of Periodically Forced Turbulence

    Get PDF
    The response of the small scales of isotropic turbulence to periodic large scale forcing is studied using two-point closures. The frequency response of the turbulent kinetic energy and dissipation rate, and the phase shifts between production, energy and dissipation are determined as functions of Reynolds number. It is observed that the amplitude and phase of the dissipation exhibit nontrivial frequency and Reynolds number dependence that reveals a filtering effect of the energy cascade. Perturbation analysis is applied to understand this behavior which is shown to depend on distant interactions between widely separated scales of motion. Finally, the extent to which finite dimensional models (standard two-equation models and various generalizations) can reproduce the observed behavior is discussed

    Revisiting Solid-solid Phase Transitions in Sodium and Potassium Tetrafluoroborate for Thermal Energy Storage

    Get PDF
    In situ synchrotron powder x-ray diffraction (PXRD) study was conducted on sodium and potassium tetrafluoroborate (NaBF4 and KBF4) to elucidate structural changes across solid-solid phase transitions over multiple heating-cooling cycles. The phase transition temperatures from diffraction measurements are consistent with the differential scanning calorimetry data (~240 °C for NaBF4 and ~290 °C for KBF4). The crystal structure of the high-temperature (HT) NaBF4 phase has been determined from synchrotron PXRD data. The HT disordered phase of NaBF4 crystallizes in the hexagonal, space group P63/mmc (No. 194) with a = 4.98936(2) Å, c = 7.73464(4) Å, V = 166.748(2) Å3, and Z = 2 at 250 °C. Density functional theory molecular dynamics (MD) calculations imply that the P63/mmc is indeed a stable structure for rotational NaBF4. MD simulations reproduce experimental phase sequence upon heating and indicates that F atoms are markedly more mobile than K and B atoms in the disordered state. Thermal expansion coefficients for both phases were determined from high precision lattice parameters at elevated temperatures, as obtained from Rietveld refinement of PXRD data. Interestingly for the HT-phase of NaBF4, the structure (upon heating) contracts slightly in the a-b plane but expands in the c direction such that overall thermal expansion is positive. Thermal conductivity at room temperature were measured and the values are 0.8-1.0 W.m-1K-1 for NaBF4 and 0.55-0.65 W.m-1K-1 for KBF4. The thermal conductivity and diffusivity showed a gradual decrease up to the transition temperature and then rose slightly. Both materials show good thermal and structural stabilities over multiple heating/cooling cycles.<br/

    Superhumps in Cataclysmic Binaries. XXV. q_crit, epsilon(q), and Mass-Radius

    Full text link
    We report on successes and failures in searching for positive superhumps in cataclysmic variables, and show the superhumping fraction as a function of orbital period. Basically, all short-period systems do, all long-period systems don't, and a 50% success rate is found at P_orb=3.1+-0.2 hr. We can use this to measure the critical mass ratio for the creation of superhumps. With a mass-radius relation appropriate for cataclysmic variables, and an assumed mean white-dwarf mass of 0.75 M_sol, we find a mass ratio q_crit=0.35+-0.02. We also report superhump studies of several stars of independently known mass ratio: OU Virginis, XZ Eridani, UU Aquarii, and KV UMa (= XTE J1118+480). The latter two are of special interest, because they represent the most extreme mass ratios for which accurate superhump measurements have been made. We use these to improve the epsilon(q) calibration, by which we can infer the elusive q from the easy-to-measure epsilon (the fractional period excess of P_superhump over P_orb). This relation allows mass and radius estimates for the secondary star in any CV showing superhumps. The consequent mass-radius law shows an apparent discontinuity in radius near 0.2 M_sol, as predicted by the disrupted magnetic braking model for the 2.1-2.7 hour period gap. This is effectively the "empirical main sequence" for CV secondaries.Comment: PDF, 45 pages, 9 tables, 12 figures; accepted, in press, to appear November 2005, PASP; more info at http://cba.phys.columbia.edu

    Hearing Impairment Is Associated with Smaller Brain Volume in Aging

    Get PDF
    Although recent studies show that age-related hearing impairment is associated with cerebral changes, data from a population perspective are still lacking. Therefore, we studied the relation between hearing impairment and brain volume in a large elderly cohort. From the population-based Rotterdam Study, 2,908 participants (mean age 65 years, 56% female) underwent a pure-tone audiogram to quantify hearing impairment. By performing MR imaging of the brain we quantified global and regional brain tissue volumes (total brain volume, gray matter volume, white matter (WM) volume, and lobe-specific volumes). We used multiple linear regression models, adjusting for age, sex, head size, time between hearing test and MR imaging, and relevant cognitive and cardiovascular covariates. Furthermore, we performed voxel-based morphometry to explore sub-regional differences. We found that a higher pure-tone threshold was associated with a smaller total brain volume [difference in standardized brain volume per decibel increase in hearing threshold in the age-sex adjusted model: -0.003 (95% confidence interval -0.004; -0.001)]. Specifically, WM volume was associated. Both associations were more pronounced in the lower frequencies. All associations were consistently present in all brain lobes in the lower frequencies and in most lobes in the higher frequencies, and were independent of cognitive function and cardiovascular risk factors. In voxel-based analyses we found associations of hearing impairment with smaller white volumes and some smaller and larger gray volumes, yet these were statistically non-significant. Our findings demonstrate that hearing impairment in elderly is related to smaller total brain volume, independent of cognition and cardiovascular ris
    corecore