33 research outputs found

    Betulin Phosphonates; Synthesis, Structure, and Cytotoxic Activity

    Get PDF
    International audienceBetulin derivatives are a widely studied group of compounds of natural origin due to their wide spectrum of biological activities. This paper describes new betulin derivatives, containing a phosphonate group. The allyl-vinyl isomerization and synthesis of acetylenic derivatives have been reported. Structural identification of products as E and Z isomers has been carried out using 1 H-, 13 C-, 31 P-NMR, and crystallographic analysis. The crystal structure in the orthorhombic space group and analysis of crystal packing contacts for 29-diethoxyphosphoryl-28-cyclopropylpropynoyloxy-lup-20E(29)-en-3β-ol 8a are reported. All new compounds were tested in vitro for their antiproliferative activity against human T47D (breast cancer), SNB-19 (glioblastoma), and C32 (melanoma) cell lines

    New acetylenic amine derivatives of 5,8-quinolinediones : synthesis, crystal structure and antiproliferative activity

    Get PDF
    Acetylenic amine derivatives of the 5,8-quinolinedione were synthesized and characterized by the1H and13C NMR, IR spectroscopy and MS spectra. Additionally, the 6- and 7-substituted allylamine-5,8-quinolinediones were synthesized for comparison purposes. The crystal structure was determined for the 6-chloro-7-propargylamine-5,8-quinolinedione and 7-chloro-6-propargylamine-5,8-quinolinedione. Additionally, the IR spectral analysis supplemented by the density functional theory (DFT) calculations were carried out. It was found that different positions of the propargylamine side chain had a distinct influence on crystal structure, formation of H-bonds and the carbonyl stretching IR bands. Correlation between the frequency separation Δv of the carbonyl IR bands and the position of the 6- and 7-substituents was found. The 7-substituted derivatives exhibited a higher frequency separation Δv. The observed correlation could provide an opportunity to use the IR spectroscopy to study substitution reactions. Cytotoxic activities against three human cancer cell lines for the 5,8-quinolinedione derivatives with different amine substituents, i.e., propargylamine, N-methylpropargylamine, 1,1-dimethylpropargylamine, allylamine and propylamine were also analysed with respect to their molecular structure

    Synthesis and in vitro antiproliferative activity of novel (4-chloro- and 4-acyloxy-2-butynyl)thioquinolines

    Get PDF
    The series of new acetylenic thioquinolines containing propargyl, 4-chloro-2-butynyl, and 4-acyloxy-2-butynyl groups have been prepared and tested for antiproliferative activity in vitro against human [SW707 (colorectal adenocarcinoma), CCRF/CEM (leukemia), T47D (breast cancer)] and murine [P388 (leukemia), B16 (melanoma)] cancer lines. Most of the obtained compounds exhibited antiproliferative activity, especially compounds 8, 12, and 21 showed the ID50 values ranging from 0.4 to 3.8 μg/ml comparable to that of cisplatin used as reference compounds

    Synthesis, structure and cytotoxic activity of mono- and dialkoxy derivatives of 5,8-quinolinedione

    Get PDF
    A series of 5,8-quinolinedione derivatives containing one or two alkoxy groups was synthesized and characterized by 1H- and 13C-NMR, IR and MS spectra. X-ray diffraction was used to investigate the crystal structures of 6-chloro-7-(2-cyjanoethoxy)-5,8-quinolinedione and 6,7-di(2,2,2-trifloroethoxy)-5,8-quinolinedione. All studied compounds were tested in vitro for their antiproliferative activity against three human cancer cell lines and human normal fibroblasts. Most of the compounds showed higher cytotoxicity than the starting compound, 6,7-dichloro-5,8-quinolinedione, and cisplatin, which was used as a reference agent

    Chromatographic and computational screening of lipophilicity and pharmacokinetics of newly synthesized betulin-1,4-quinone hybrids

    Get PDF
    Lipophilicity is one of the most important parameters determining the pharmacodynamic and pharmacokinetic properties, as well as the toxicity of many compounds. The subject of the research was to determine the lipophilicity of betulin-1,4-quinone hybrids using thin layer chro-matography in reverse phase system and computer programs to calculate its theoretical models. The correlation between the experimental and theoretical values of lipophilicity was analyzed. Lipinski’s and Veber’s rules, as well as penetration through the blood–brain barrier were also determined using computer programs. For all of the analyzed values, a similarity analysis was performed. The dendrograms for the experimental and theoretical lipophilicity show that there is a correlation between them. However, the dendrograms for the experimental lipophilicity and pharmacokinetic parameters indicate that there is no correlation between the structure and the pharmacological properties. Hybrids exhibit a high biological activity against cancer cell lines, with a high level of NAD[P]H-quinone oxidoreductase (NQO1) protein. The enzymatic assay used has shown that these compounds are good NQO1 substrates, as evidenced by the increasing metabolic rates relative to that of streptonigrin. The similarity analysis has also shown that there is no correlation between lipophilicity and biological activity for the tested compounds

    New phosphorus analogs of bevirimat: synthesis, evaluation of anti-HIV-1 activity and molecular docking study

    Get PDF
    Since the beginning of the human immunodeficiency virus (HIV) epidemic, many groups of drugs characterized by diverse mechanisms of action have been developed, which can suppress HIV viremia. 3-O-(3′,3′-Dimethylsuccinyl) betulinic acid, known as bevirimat (BVM), was the first compound in the class of HIV maturation inhibitors. In the present work, phosphate and phosphonate derivatives of 3-carboxyacylbetulinic acid were synthesized and evaluated for anti-HIV-1 activity. In vitro studies showed that 30-diethylphosphonate analog of BVM (compound 14a) has comparable effects to BVM (half maximal inhibitory concentrations (IC50) equal to 0.02 μM and 0.03 μM, respectively) and is also more selective (selectivity indices: 3450 and 967, respectively). To investigate the possible mechanism of antiviral effect of 14a, molecular docking was carried out on the C-terminal domain (CTD) of HIV-1 capsid (CA)–spacer peptide 1 (SP1) fragment of Gag protein, designated as CTD-SP1, which was described as a molecular target for maturation inhibitors. Compared with interactions between BVM and the protein, an increased number of strong interactions between ligand 14a and protein, generated by the phosphonate group, was observed

    Lipophilicity, pharmacokinetic properties, and molecular docking study on SARS-CoV-2 target for betulin triazole derivatives with attached 1,4- quinone

    Get PDF
    A key parameter in the design of new active compounds is lipophilicity, which influences the solubility and permeability through membranes. Lipophilicity affects the pharmacodynamic and toxicological profiles of compounds. These parameters can be determined experimentally or by using different calculation methods. The aim of the research was to determine the lipophilicity of betulin triazole derivatives with attached 1,4-quinone using thin layer chromatography in a reverse phase system and a computer program to calculate its theoretical model. The physiochemical and pharmacokinetic properties were also determined by computer programs. For all obtained parameters, the similarity analysis and multilinear regression were determined. The analyses showed that there is a relationship between structure and properties under study. The molecular docking study showed that betulin triazole derivatives with attached 1,4-quinone could inhibit selected SARS-CoV-2 proteins. The MLR regression showed that there is a correlation between affinity scoring values (DG) and the physicochemical properties of the tested compounds

    Spectroscopic investigations, computational analysis and molecular docking to SAR-Cov-2 targets studies of 5,8-quinolinedione attached to betulin derivatives

    Get PDF
    The 5,8-quinolinedione-betulin hybrids were investigated using spectroscopic methods as well as a variety of quantum chemical calculations in order to characterize their molecular structure. We used FT-IR and NMR spectroscopy supplemented by the density functional theory (DFT) calculations, molecular electrostatic potential (MEP) and molecular orbital (HOMO, LUMO) analyses. The experimental and calculated FT-IR spectra showed a good correlation for all compounds. Analysis of carbonyl band showed that the compounds are the 7-mono substituted. The calculated 1H NMR and 13C NMR spectra of hybrids reproduced well the experimental ones. Identification of C-6 and C-7 carbon atoms of 5,8-quinolinedione revealed the position of betulin moiety at the C-7 of 5,8-quinolinedione. Molecular electrostatic potential maps of hybrids allowed to recognize the electrophilic and nucleophilic regions within the molecules. The molecular docking study was used to examine the interaction between the 5,8-quinolinedione-betulin hybrids and the SARS-CoV-2 protein, like: Mpro and PLpro. The obtained results showed that compounds with the highest Dock Score are good anti-SARS-CoV-2 potential drug candidates

    Molecular structure, in vitro anticancer study and molecular docking of new phosphate derivatives of betulin

    Get PDF
    A series of 30-diethylphosphate derivatives of betulin were synthesized and evaluated for their in vitro cytotoxic activity against human cancer cell lines, such as amelanotic melanoma (C-32), glioblastoma (SNB-19), and two lines of breast cancer (T47D, MDA-MB-231). The molecular structure and activities of the new compounds were also compared with their 29-phosphonate analogs. Compounds 7a and 7b showed the highest activity against C-32 and SNB-19 cell lines. The IC50 values for 7a were 2.15 and 0.91 M, and, for 7b, they were 0.76 and 0.8 M for the C-32 and SNB-19 lines, respectively. The most potent compounds, 7a and 7b, were tested for their effects on markers of apoptosis, such as H3, TP53, BAX, and BCL-2. For the whole series of phosphate derivatives, a lipophilicity study was performed, and the ADME parameters were calculated. The most active products were docked to the active site of the EGFR protein. The relative binding affinity of selected phosphate betulin derivatives toward EGFR was compared with standard erlotinib on the basis of ChemScore and KDEEP score. Positively, all derivatives docked inside the cavity and showed significant interactions. Moreover, a molecular dynamics study also reveals that ligands 7a,b form stable complexes and the plateau phase started after 7 ns

    Alkoxy and Enediyne Derivatives Containing 1,4-Benzoquinone Subunits—Synthesis and Antitumor Activity

    No full text
    The compounds produced by a living organism are most commonly as medicinal agents and starting materials for the preparation of new semi-synthetic derivatives. One of the largest groups of natural compounds consists of products containing a 1,4-benzoquinone subunit. This fragment occurs in three enediyne antibiotics, dynemicin A, deoxydynemicin A, and uncilamicin, which exhibit high biological activity. A series of alkoxy derivatives containing 1,4-naphthoquinone, 5,8-quinolinedione, and 2-methyl-5,8-quinolinedione moieties was synthesized. Moreover, the 1,4-benzoquinone subunit was contacted with an enediyne fragment. All obtained compounds were characterized by spectroscopy and spectrometry methods. The resulting alkane, alkene, alkyne and enediyne derivatives were tested as antitumor agents. They showed high cytotoxic activity depending on the type of 1,4-benzoquinone subunit and the employed tumor cell lines. The synthesized derivatives fulfill the Lipinski Rule of Five and have low permeability through the blood–brain barrier
    corecore