722 research outputs found

    Energy potential of a tidal fence deployed near a coastal headland

    Get PDF
    Enhanced tidal streams close to coastal headlands appear to present ideal locations for the deployment of tidal energy devices. In this paper, the power potential of tidal streams near an idealized coastal headland with a sloping seabed is investigated using a near-field approximation to represent a tidal fence, i.e. a row of tidal devices, in a two-dimensional depth-averaged numerical model. Simulations indicate that the power extracted by the tidal fence is limited because the flow will bypass the fence, predominantly on the ocean side, as the thrust applied by the devices increases. For the dynamic conditions, fence placements and headland aspect ratios considered, the maximum power extracted at the fence is not related in any obvious way to the local undisturbed kinetic flux or the natural rate of energy dissipation due to bed friction (although both of these have been used in the past to predict the amount of power that may be extracted). The available power (equal to the extracted power net of vertical mixing losses in the immediate wake of devices) is optimized for devices with large area and small centre-to-centre spacing within the fence. The influence of energy extraction on the natural flow field is assessed relative to changes in the M2 component of elevation and velocity, and residual bed shear stress and tidal dispersion

    Modelling tidal energy extraction in a depth-averaged coastal domain

    Get PDF
    An extension of actuator disc theory is used to describe the properties of a tidal energy device, or row of tidal energy devices, within a depth-averaged numerical model. This approach allows a direct link to be made between an actual tidal device and its equivalent momentum sink in a depth-averaged domain. Extended actuator disc theory also leads to a measure of efficiency for an energy device in a tidal stream of finite Froude number, where efficiency is defined as the ratio of power extracted by one or more tidal devices to the total power removed from the tidal stream. To demonstrate the use of actuator disc theory in a depth-averaged model, tidal flow in a simple channel is approximated using the shallow water equations and the results are compared with the published analytical solutions. © 2010 © The Institution of Engineering and Technology

    On the Applicability of Temperature and Precipitation Data from CMIP3 for China

    Get PDF
    Global Circulation Models (GCMs) contributed to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) and are widely used in global change research. This paper assesses the performance of the AR4 GCMs in simulating precipitation and temperature in China from 1960 to 1999 by comparison with observed data, using system bias (B), root-mean-square error (RMSE), Pearson correlation coefficient (R) and Nash-Sutcliffe model efficiency (E) metrics. Probability density functions (PDFs) are also fitted to the outputs of each model. It is shown that the performance of each GCM varies to different degrees across China. Based on the skill score derived from the four metrics, it is suggested that GCM 15 (ipsl_cm4) and GCM 3 (cccma_cgcm_t63) provide the best representations of temperature and precipitation, respectively, in terms of spatial distribution and trend over 10 years. The results also indicate that users should apply carefully the results of annual precipitation and annual temperature generated by AR4 GCMs in China due to poor performance. At a finer scale, the four metrics are also used to obtain best fit scores for ten river basins covering mainland China. Further research is proposed to improve the simulation accuracy of the AR4 GCMs regarding China

    Evolution of particle-scale dynamics in an aging clay suspension

    Full text link
    Multispeckle x-ray photon correlation spectroscopy was employed to characterize the slow dynamics of a colloidal suspension formed by highly-charged, nanometer-sized disks. At scattering wave vectors qq corresponding to interparticle length scales, the dynamic structure factor follows a form f(q,t)exp[(t/τ)βf(q,t) \sim \exp[-(t/\tau)^{\beta}], where β\beta \approx 1.5. The characteristic relaxation time τ\tau increases with the sample age tat_a approximately as τta1.8\tau \sim t_a^{1.8} and decreases with qq approximately as τq1\tau \sim q^{-1}. Such a compressed exponential decay with relaxation time that varies inversely with qq is consistent with recent models that describe the dynamics in disordered elastic media in terms of strain from random, local structural rearrangements. The amplitude of the measured decay in f(q,t)f(q,t) varies with qq in a manner that implies caged particle motion at short times. The decrease in the range of this motion and an increase in suspension conductivity with increasing tat_a indicate a growth in the interparticle repulsion as the mechanism for internal stress development implied by the models.Comment: 4 pages, includes 4 postscript figures; accepted for publication in Phys Rev Let

    Legendrian Distributions with Applications to Poincar\'e Series

    Full text link
    Let XX be a compact Kahler manifold and LXL\to X a quantizing holomorphic Hermitian line bundle. To immersed Lagrangian submanifolds Λ\Lambda of XX satisfying a Bohr-Sommerfeld condition we associate sequences {Λ,k}k=1\{ |\Lambda, k\rangle \}_{k=1}^\infty, where k\forall k Λ,k|\Lambda, k\rangle is a holomorphic section of LkL^{\otimes k}. The terms in each sequence concentrate on Λ\Lambda, and a sequence itself has a symbol which is a half-form, σ\sigma, on Λ\Lambda. We prove estimates, as kk\to\infty, of the norm squares Λ,kΛ,k\langle \Lambda, k|\Lambda, k\rangle in terms of Λσσ\int_\Lambda \sigma\overline{\sigma}. More generally, we show that if Λ1\Lambda_1 and Λ2\Lambda_2 are two Bohr-Sommerfeld Lagrangian submanifolds intersecting cleanly, the inner products Λ1,kΛ2,k\langle\Lambda_1, k|\Lambda_2, k\rangle have an asymptotic expansion as kk\to\infty, the leading coefficient being an integral over the intersection Λ1Λ2\Lambda_1\cap\Lambda_2. Our construction is a quantization scheme of Bohr-Sommerfeld Lagrangian submanifolds of XX. We prove that the Poincar\'e series on hyperbolic surfaces are a particular case, and therefore obtain estimates of their norms and inner products.Comment: 41 pages, LaTe

    Semiclassical almost isometry

    Full text link
    Let M be a complex projective manifold, and L an Hermitian ample line bundle on it. A fundamental theorem of Gang Tian, reproved and strengthened by Zelditch, implies that the Khaeler form of L can be recovered from the asymptotics of the projective embeddings associated to large tensor powers of L. More precisely, with the natural choice of metrics the projective embeddings associated to the full linear series |kL| are asymptotically symplectic, in the appropriate rescaled sense. In this article, we ask whether and how this result extends to the semiclassical setting. Specifically, we relate the Weinstein symplectic structure on a given isodrastic leaf of half-weighted Bohr-Sommerfeld Lagrangian submanifolds of M to the asymptotics of the the pull-back of the Fubini-Study form under the semiclassical projective maps constructed by Borthwick, Paul and Uribe.Comment: exposition improve

    Adaptive quadtree simulation of sediment transport

    Get PDF

    Tracer Advection in an Idealised River Bend with Groynes

    Get PDF
    This paper presents numerical simulations of particle advection in the bend of an open channel containing groynes, which is an idealised form of a shallow river bend in a wide river. The flow field is computed using a boundary-fitted solver of the non-orthogonal, curvilinear shallow water equations. The computational grid is generated by solving Poisson-type elliptic partial differential equations using an iterative multi-grid scheme for prescribed boundary coordinates. The shallow water equations are discretised with finite differences in space, and 4th order Runge-Kutta integration in time. Tracers introduced at specific initial locations have their trajectories computed using Lagrangian particle tracking. The numerical shallow flow model is verified by comparison to the analytical solution of fully developed flow in an open channel. The combined shallow flow and Lagrangian particle-tracking model is then used to simulate the advection of tracer particles in a rectangular channel containing a pair of parallel groynes, and tracer particles in a curved open channel containing groynes, of dimensions roughly equivalent to a Danube River bend

    Immunogenicity of a universal HIV-1 vaccine vectored by DNA, MVA and CHADV-63 in a Phase I/IIA clinical trial

    Get PDF
    Background The major challenge facing both antibody and T cell-eliciting vaccines against HIV-1 is the extreme variability of the HIV-1 genome: a successful vaccine has to effectively target diverse HIV-1 strains circulating in the population and then must deal with ongoing virus escape in infected individuals. To address these issues, we assembled a vaccine immunogen HIVconsv from the functionally most conserved regions (not epitopes) of the HIV-1 proteome. Methods A gene coding for the HIVconsv immunogen was inserted into plasmid DNA (D), modified vaccinia virus Ankara (MVA; M) and non-replicating adenovirus of a chimpanzee origin ChAdV-63 (C). Currently, combined heterologous prime-boost regimens of these vaccines, namely CM, DDDCM and DDDMC, are being evaluated in a phase I/IIa trial HIV-CORE002 in healthy HIV-1/2-negative volunteers in Oxford. Results Preliminary data indicate that the vaccines are well tolerated and show high immunogenicity. Following the CM regimen, vaccine-induced T cell frequencies reached a median of 5150 (range 1475 to 16495) SFU/106 PMBC ex vivo one week post MVA vaccination. DNA priming increased subsequent T cell responses to ChAdV-63 vaccination (median: C 577 and DDDC 1328 SFU/106 PBMC) and ELISpot responses again peaked 1 week following MVA (median 4500; range 2260-7960 SFU/106 PBMC). Matrix analyses of the participants following CM vaccination showed that T cells responded to a range of peptides across the length of HIVconsv. The CM regimen elicited IFN-γ in both CD4+ and CD8+ T cell subsets and polyfunctional (IFN-γ & TNF-α) responses to HIVconsv peptides. Conclusion Presented data will be very much work in progress. Nevetheless, the HIVconsv vaccines have so far induced T cell responses superior to other HIV-1 vaccine candidates tested to date. ChAdV-63 is the first adenovirus of chimp origin delivering an HIV-1-derived immunogen that has reached the clinic. The work is supported by Medical Research Council UK
    corecore