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Abstract: Morphodynamic change is a key factor in the development of river systems.  This paper 
describes a two-dimensional model of fluvial bed morphodynamics, with the flow hydrodynamics 
represented by the hyperbolic nonlinear shallow water equations and the bed morphodynamics by the 
bed deformation equation.  Bed load transport is estimated using a simple expression.  Suspended 
sediment transport is not considered.  The model uses a deviatoric form of the nonlinear shallow water 
equations that mathematically balances the source and flux gradient terms at equilibrium, including 
the effects of non-uniform bed topography. The governing equations are solved in a decoupled way, 
using a Godunov-type finite volume solver for the nonlinear shallow water equations and second-order 
finite differences for the bed deformation equation, both based on adaptive quadtree grids.  The 
evolution of a sandbar in an open channel is tested against generalized approximate analytical 
solutions. The numerical predictions on adaptive quadtree grids are found to be in excellent agreement 
with the approximate analytical solutions within the range of validity of the latter. Results are also 
presented for the evolution of a sand dune and a sand pit.  It is demonstrated that the de-coupled 
shallow flow and bed morphodynamics calculations are computationally efficient and accurate.  It is 
shown that the use of adaptive quadtree grids leads to a much improved computational performance 
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ABSTRACT 

Morphodynamic change is a key factor in the development of river systems.  This paper 

describes a two-dimensional model of fluvial bed morphodynamics, with the flow 

hydrodynamics represented by the hyperbolic nonlinear shallow water equations and the bed 

morphodynamics by the bed deformation equation.  Bed load transport is estimated using a 

simple expression.  Suspended sediment transport is not considered.  The model uses a 

deviatoric form of the nonlinear shallow water equations that mathematically balances the 

source and flux gradient terms at equilibrium, including the effects of non-uniform bed 

topography. The governing equations are solved in a decoupled way, using a Godunov-type 

finite volume solver for the nonlinear shallow water equations and second-order finite 

differences for the bed deformation equation, both based on adaptive quadtree grids.  The 

evolution of a sandbar in an open channel is tested against generalized approximate 

analytical solutions. The numerical predictions on adaptive quadtree grids are found to be in 

excellent agreement with the approximate analytical solutions within the range of validity of 

the latter. Results are also presented for the evolution of a sand dune and a sand pit.  It is 

demonstrated that the de-coupled shallow flow and bed morphodynamics calculations are 

computationally efficient and accurate.  It is shown that the use of adaptive quadtree grids 

leads to a much improved computational performance over that on an equivalent fine 

resolution fixed uniform grid.    
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Key Words: morphodynamics, shallow water equations; bed load, Godunov-type scheme; 

approximate Riemann solver; adaptive quadtree grid 

 

NOTATION 

 

A bed-load sediment transport coefficient 

DC  skin friction drag coefficient 

Co  Courant number 

D water depth at the inflow boundary 

ds side length of the cell 

f  Coriolis parameter 

f(u)  flux vector 

g acceleration due to gravity 

g(u) flux vector 

H apex height of dune or bar 

h total water depth 

hb  bed elevation 

sh  still water depth 

i, j cell spatial indices 

L dimension of square (quadtree) domain 

lev cell subdivision level 

M cell index at outlet 

m power index 

n time index 

qbx, qby bedload 

qo  inflow flux 

qsx, qsy suspended load  

qtx, qty total volumetric sediment transport rate components 

Sox, Soy bed slope components 

s(u) source term vector 

T  morphodynamic time-scale 
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t time  

u vector of conserved variables 

U , V  depth-averaged velocity components 

U0 depth-averaged inflow velocity  

x, y Cartesian horizontal spatial coordinates 

x0, x1, x2 prescribed locations in the x-direction 

z0 bed roughness length 

 

t  hydrodynamic time step 

T  morphodynamic time step 

Δx, Δy spatial cell sizes in x, y directions 

  bed porosity 

  free surface elevation above still water level 

wx , wy  stress components at the water surface 

bx , by  stress components at the bed 

  eddy viscosity coefficient 

  fluid density 

  magnitude of bed level gradient 

 

1.  INTRODUCTION 

River bed evolution involves complex 3-D interactions between the flow and the bed 

sediment, including sediment transport, erosion and deposition, and feedback between the 

changing bed morphology and flow field. A major challenge is to provide accurate 

predictions of the physical processes while propagating changes in bed level over a broad 

range of space and time scales. The basic structure of morphodynamic models consists of 

sub-models for the hydrodynamic and sediment transport processes. The sediment 

conservation law is generally used to determine changes in bed level (see e.g. Nicholson et 

al.
1
). Proper coupling of the hydrodynamic model and sediment transport model including 

the sediment conservation law is essential for accurate long-term simulation.   
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Hudson and Sweby 
2
 developed a 1-D morphodynamic numerical model to simulate the 

evolution of a mound, using coupled and decoupled numerical approaches.  Hudson and 

Sweby considered five different Godunov-type formulations, each of which included a flux-

limited version of Roe’s approximate Riemann solver to remove spurious oscillations at cell 

interfaces. The numerical predictions were compared with an approximate analytical 1-D bed 

deformation solution obtained following De Vriend 
3
.  Hudson and Sweby indicated that of 

all the formulations, the decoupled steady approach is most accurate.   Furthermore, Hudson 

and Sweby 
4
 present a detailed overview of explicit Godunov-type numerical methods for 

solving 1-D morphodynamical systems, and suggest improved Lax-Wendroff and high 

resolution schemes with equilibrium balancing based on the coupled hydrodynamics and bed 

deformation equations.   

 

Depth-integrated 2DH models are applicable to flow domains in which there is relatively 

simple monotonic vertical variation in the velocity, such that a depth-averaged value is 

representative.  Examples include tidal flows in well-mixed estuaries and coastal areas. In a 

paper on the mathematical modelling of morphological evolution, De Vriend 
3
 provided 

useful advice on how to construct a 2DH numerical model. De Vriend pointed out that three 

major issues needed to be considered: a) the predictive ability of the constituent models when 

applied to a given situation; b) the balance of the compound models as to physical reliability 

and numerical accuracy; and c) the appropriate interaction of the constituent models, both 

physically and numerically.  A considerable number of 2DH morphodynamics models have 

been developed in the past thirty or so years (see Fleming and Hunt 
5
; Yamaguchi and 

Nishioka 
6
; O’Connor and Nicholson 

7
, Wang et al. 

8
, de Vriend 

9
; Tanguy and Zhang 

10
; Van 

Wijngaarden 
11

; Grunnet et al. 
12

).  

 

In the present paper, a 2DH morphodynamic numerical model is described based on a 

deviatoric form of the hyperbolic nonlinear shallow water equations and the bed deformation 

equation, which mathematically balances the flux and source terms at equilibrium. The 

equations are discretised on a quadtree grid using a Godunov-type finite volume scheme with 

either HLL or Roe’s approximate Riemann solver (Toro 
13

).  A first order upwind method is 

used for simulation of the evolution of a sand bar, a sand dune and hole.  
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2.  GOVERNING EQUATIONS 

2.1  Hydrodynamics 

The two-dimensional shallow water equations are the depth-averaged version of the 

Reynolds averaged Navier Stokes equations. They are applicable to nearly horizontal flows 

with negligible vertical acceleration, such as large-scale flood waves where the wavelength is 

much larger than the water depth. The two-dimensional nonlinear shallow water equations 

may be derived by depth-integrating the three-dimensional Reynolds-averaged Navier-Stokes 

equations, neglecting the vertical acceleration of water particles, and taking the pressure 

distribution to be hydrostatic.  Expressed in matrix form as a system of conservation laws 

given by Rogers et al. 
14, 15

, a conservation law of the two-dimensional non-linear shallow 

water equations may be written as 

s
gfu
















yxt
, (1) 

in which the vector of conserved variables, u, the flux vectors, f(u) and g(u), and the 

source term vector, s(u), are 


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
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

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
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/)(
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 , 

(2) 

where   is the free surface elevation above the still water level, U and V  are depth-averaged 

velocity components, h (= sh ) is the total water depth, sh  is the still water depth,  f is the 

Coriolis parameter related to the Earth’s rotation, wx  and wy  are the surface stress 

components, bx  and by  are the bed stress components, Sox and Soy are the bed slope 

components,   is the eddy viscosity coefficient,  g is the acceleration due to gravity,   is the 
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fluid density, t is time, and x and y are horizontal distances in the Cartesian system. The bed 

stress terms bx  and by  represent the energy dissipation influence of bed roughness on the 

flow and are estimated empirically from 

            22 VUUCDbx   , and 22 VUVCDby    and 22 vuvC fby   . (3) 

When bed deformation is considered, the skin friction drag coefficient 

2

0

D
)/ln(1

40.0












hz
C  

(Soulsby 
16

), in which z0 is the bed roughness length.  

The nonlinear shallow water equations (1) and (2) expressed in matrix hyperbolic 

conservation form are solved to give updated values for the dependent variables using a 

standard Godunov-type finite volume scheme.  Interface fluxes are evaluated using either 

HLLC or Roe’s approximate Riemann solver (see Toro 
13

 for a full description of these 

schemes). The hydrodynamic time step is t , and is chosen to satisfy the Courant condition, 

such that  

t min


















Ugh

xCo
,  1Co0(  , normally 0.6-0.8 is used). (4) 

 

2.2  Sediment Transport 

The sediment transport equations described here apply to non-cohesive sediment at low 

concentration in liquid of constant density. In two horizontal dimensions, for the equilibrium 

(or near-equilibrium) condition, the sediment budget equation ignoring “storage” of 

suspended sediment can be written as (Soulsby 
16

),  

)(
1

1 ttb

y

q

x

q

t

h yx


















,   (5) 

where hb is the bed elevation,   is the bed porosity, qtx, qty are components of total 

volumetric sediment transport rate in the positive x, y directions, and are the sum of 

suspended load qsx, qsy, and bedload qbx, qby.  Only bedload transport is considered in the 

present problem, and so qtx = qbx, and  qty = qby. 

The bed deformation equation is discretised spatially at cell i, j using finite differences on a 

locally uniform grid template, such that  
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
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b
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 (6) 

Because the central difference method tends to create spurious (and possibly unstable) bed 

undulations (see e.g. Huang et al. 
17

), the discretised values of 
x

q x



 t  and 
y

q y



 t
 of cell i, j are 

computed by a first order upwind difference method (e.g. Callaghan et al. 
18

) as   

x

qq

x

q jixjix

ji

x







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2

),1(t),(t

,

t ,   if  
0),(t jixq

  (7) 

and 

x

qq

x

q jixjix

ji

x








  ),1(t),(t

,

t  ,  if 0),(t jixq    
(8) 

where x  and y  are cell widths in the x- direction, and similar in y- direction. A second 

order Adams-Bashforth time-stepping numerical solver is applied to integrate the discretised 

bed deformation equation (6) in time.  Because the bed level changes slowly compared to the 

hydrodynamic time step, the bed deformation model is not invoked at every time step of the 

hydrodynamic model.  This is in order to provide sufficient time for the flow velocity to 

reach a near-equilibrium state and hence to reduce oscillations in the flow field, as well as for 

computational efficiency.  The morphodynamic time step T  for the bed deformation model 

is taken to be between 100 and 500 times the hydrodynamic time step t  in the cases 

considered herein. Given that the time is Tnt   where the superscript n represents the time 

index, the updated bed level is given by 





























1

,

b

,

b

),(b

1

),(b
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2
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n
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n
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n
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n

ji
t

h

t

h
Thh  (9) 

Predictions of the flow and bed changes are made using a decoupled approach, whereby the 

nonlinear shallow water equations are solved separately from the bed deformation equation. 

The hydrodynamic module predicts velocities and water depth at each cell, using centre and 

face values. The sediment module utilises values of qt at each cell centre.  Then the new bed 

level hb is computed from (9) and (6). The still water datum is constant, and so sh is 

calculated according to the new bed level from, 
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1

),(),(),(

1

),(

  n

jib

n

jib

n

jis

n

jis hhhh   (10) 

in which 1n

sh  and 1n

bh  are the updated still water depth and bed level values at the cell (i, j) 

centre. Hence, 
1n

sh  provides feedback to the hydrodynamic model.   At first, the combined 

model switches on solely the hydrodynamic part.  Later when the flow is steady, the bed 

deformation part is also implemented and the bed changes are computed every T . 

 The following simple transmissive relations are used for inflow and outflow 

hydrodynamic and morphodynamic boundary conditions (Toro 
13

), 

h0 = h1,  U0 = U1, hb0 = hb1    hM = hM-1,  UM = UM-1,  hbM = hbM-1   (11) 

  

In the above, subscripts 0 and 1 refer to the grid points aligned normal to the inflow 

boundary, such that 0 is immediately outside the boundary, and 1 is immediately inside the 

flow domain.  Subscripts M and M-1 have similar meaning, and apply at the outlet.   

 

 

3.  DYNAMICALLY ADAPTIVE QUADTREE GRID 

The shallow water equations and bed deformation equation are discretised using finite 

volumes on dynamically adaptive structured quadtree grids. The first step in quadtree grid 

generation is definition of the computational domain using seeding points based on the initial 

bathymetry. Next, the cell is successively divided according to seeding point density and 

boundary identification. If more than one seeding point is located within a cell, the cell is 

subdivided into four quadrant cells unless the cell is already at the maximum specified 

subdivision level. The resulting grid is highly resolved in the vicinity of the seeding points, 

and may have very large differences in cell size and configurations of neighbouring cells. 

The third step is grid regularisation and minimum division in order to control the local 

variation in grid density. Starting from the second highest level, each parent cell is examined 

in turn and subdivided if any of its adjacent and corner neighbour cells is less than half the 

size. This is undertaken in a single sweep through the quadtree. It helps to reduce the 

complexity of the local cell layout, thus improving computational efficiency. Furthermore, an 

extra function (if required) can be implemented to check that there is minimum division in 

certain areas of interest within the flow domain to provide sufficient computational accuracy. 
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When the mesh is generated, cell information (e.g. neighbour references, parent and child cell 

pointers) is automatically stored using a hierarchical data structure, which can be interrogated 

to locate neighbour cells during grid regularisation and adaptation during the whole 

simulation.  The size of a cell is calculated via 

lev2

L
ds  ,    (12) 

where ds is the side length of the cell, L is the dimension of the square domain, and lev is the 

subdivision level of the cell.  The data structure is updated when implementing dynamic 

refinement and removal of grid cells according to specified adaptation criteria during the 

simulation, thus providing a locally high resolution, dynamically adaptive evolving grid.  

Greaves and Borthwick 
19

, Liang et al. 
20

, and Huang 
21

 give a full description of the quadtree 

grid generation procedure. 

 

4.   2-D BED EVOLUTION TEST RESULTS  

 

4.1  Sandbar 

This case is simply the 2-D analogue of Hudson and Sweby’s 
2
 1-D bed deformation test, 

which has an approximate analytical solution.  We define x, y as distances along the open 

channel in the stream-wise and transverse directions respectively, with the origin at the 

inflow boundary. The channel initially has a flat, horizontal bed except for a bar of apex 

height H located between x1 and x2.  The initial water depth, and flow velocity conditions are 

set as,  

0b0
),(),(




tt
yxhDyxh ,    (13) 

and 

0

o

0 ),(
),(






t

t yxh

q
yxU ,    

(14) 

where qo is a constant inflow flux, D is the water depth at the inflow boundary (thus defining 

the datum), h(x, y) is the water depth, U(x, y) is the flow velocity, and hb(x, y) is the bed 

elevation above the given datum, and t is time.  We make the same rigid-lid assumption as 
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Hudson and Sweby 
2
 used, which is only valid for U small, H << D, and hb slowly changing. 

For a given bed elevation, the velocity is determined as, 

t

t yxhD

q
yxU

),(
),(

b

o


   .    (15) 

In this paper, qo > 0, and U(x,y) > 0, and the sediment transport is purely by bed load, with 

the volumetric bed-load sediment transport flux given by (see e.g. Chesher et al. 
22

),  

 m
t

yxUAyxq ),(),(b   .  (16) 

The coefficient A has dimensions m
2-m

s
m-1

; in which m is a power (whose range 53  m  

corresponds to experimental data).  Utilising the rigid lid assumption, (16) becomes 

  m

t

m

t
yxhDqAyxq


 ),(),( bob ,     (17) 

The 2-D sandbar has the same profile as the 1-D case considered by Hudson and Sweby 
2, 4

 

with initial bed elevation given by 



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otherwise0
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000b
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yxh
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 (18) 

The flow domain is of length 1000 × 1000 m, x1 = 300 m, x2 = 500 m, D = 10 m, H = 1 m, m 

= 3, qo = 10 m
2
/s, and   = 0.4.  According to Hudson and Sweby 

2, 4
 and Huang et al. 

17
, the 

bed deformation equation can be treated as a quasi-linear wave equation, and so the 

movement of the sand bar is given by: 

000b ),(),(



tbt

yxhyxh   (19) 

with           
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and T is defined as the morphodynamic time-scale (Huang et al. 
17

), 

mm

m

UmA

D

qmA

D
T

o

2

o

2 )1()1(  







 .    (21) 

where DqU 00  .  The approximate solution of the bed deformation hb is valid until t/T 

reaches a maximum value of 9.11/ Tt . Hudson and Sweby expressed this in terms of A 

as At /238 . 
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A comparison is made between the numerical model predictions of morphodynamic change 

and the corresponding approximate analytical solutions using dynamically adaptive quadtree 

grids and uniform grids. The hydrodynamics are computed using the Godunov-type finite 

volume scheme with an HLLC approximate Riemann solver.  The hydrodynamic time step is 

1.0t s. The bed deformation equation is solved using upwind differences. In this case, the 

coefficient A = 0.01 s
2
/m. The bed level update time step tT  50  in this case.  In order to 

be consistent with the analytical model, bed friction, surface, and (viscous) effective stresses 

are not included.  The Coriolis force is also neglected.  The numerical simulation is first run 

for an initial 1000 s with the bed and mesh fixed in order to reach a steady hydrodynamic 

state, at which point the time is set to t = 0 s.  The bed deformation model is then switched 

on.  

 

The initial quadtree grid is divided between 5 and 8 levels ( 25.31x  and 3.91 m 

respectively).  Figure 1 (a) shows the initial quadtree grid. The quadtree grid is dynamically 

adapted according to the magnitude of the bed level gradient,  































22

y

h

x

h bb . (22) 

If   exceeds or is equal to 0.0003, a cell is divided into four. If all four cells sharing the 

same parent satisfy   < 0.0001, the four cells are removed. The maximum division level is 8 

and minimum level is 5. Linear interpolation is used to create a local discretisation template 

with the same level for each cell. Renewal of the mesh is only implemented whenever the 

bed level is calculated and updated, and only one level more or less allowed for coarsening or 

refining. Figure 1(b) shows the adapted quadtree grid at t = 238/A.   

 

The 2-D sandbar case was run on a fixed uniform grid of 8-level division until t = 238/A 

using the first-order upwind difference scheme. Figure 2 shows the bed level profiles 

obtained by the approximate analytical solution, fixed grid and adaptive grid.  The prediction 

obtained on the adapted quadtree grid is very close to that from the fixed grids using the 

highest level. Use of the adapted quadtree grid improves the computational time by 60% 
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while retaining accuracy.  It should be noted that the predictions by the first order upwind 

method introduce artificial diffusion, causing the noticeable reduction in amplitude of the 

sand wave.  In practice, this could be improved by using second order upwind method. 

 

4.2  Sand-Dune 

The second 2-D case involves the evolution of a sediment bank resembling a dune on an 

otherwise horizontal erodible bed (Hudson and Sweby 
4
).  For this problem no approximate 

analytical solution is available.  The overall plan dimensions of the domain are 1500 m 

longitudinal by 1000 m transverse, with respect to the channel.  All other initial conditions 

are set the same as the 1-D case. The numerical model is first run to hydrodynamic steady 

state for a fixed bed from the following initial water depth, flow velocity and bed profile 

conditions: 

 


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otherwise0

600400,700500if)
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),(
22

0b

yx
yx

yxh
t


  (23) 

Figure 3 (a) shows the initial bed level contours and 3-D view of the bed surface.  

  

The simulation is undertaken on a uniform grid with a maximum of 8-level division. The 

coefficient A is set equal to 0.01 s
2
/m, m = 3, with morphodynamic time-scale T = 2000s.  The 

simulation run time is until t = 20 hours.  This case should be exactly equivalent to a 

simulation period of t = 200 hours with A = 0.001 s
2
/m (T = 20000s) used by Hudson and 

Sweby 
4
). Figure 3(b) shows the bed level contours and 3-D view at t = 20 hours.  

 

Convergence of the numerical solution is examined for grid division levels 4, 5, 6, and 7 

against level 8.  Figure 4 illustrates the bed level contours obtained on the different grids.  It 

is obvious that the level 4 and 5 grids give too coarse a representation of the evolved 

bedform.  The results on the level 6 and 7 grids indicate that the plan shape has the lateral 

wings usually associated with the migrating dune.  The contour plot for the level 8 grid 

includes the rear indent in agreement with Hudson and Sweby 
4
.  
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The 2-D sand dune case has been modelled on a dynamically adaptive quadtree grid where 

cell refinement is according to bed gradient (expressed by Eq. (22) with the same criteria for 

the enrichment and coarsening). The maximum division is 8- and the minimum is 5- level. 

Figure 5 shows the adapted quadtree grids, bed level contours and 3-D views at t = 1h and 

2h. The dune evolves to have an arrow-head or chevron like shape in plan, with a steep 

upstream front, shallower sloped tail and sideways protrusions. The result is very similar to 

the prediction obtained on the reference uniform grid.  

 

The CPU time for the simulation on the adapted grid using the first-order upwind method and 

5 to 8 level division is around 20% of the time and 30% of storage required by an 8-level 

uniform grid. Use of the adapted quadtree grid therefore speeds up the computational process 

while retaining accuracy.  Obviously the smaller the cell dimension the better the accuracy of 

the predictions in the range of grid convergence (Huang et al. 
17

). This advantage becomes 

more significant when the computational domain is large and the simulation time is long. 

Figure 6 shows the error (expressed as deviation from the solution on the level 8 uniform 

grid) against relative CPU time for the sand dune case at t = 20 h (A = 0.01 s
2
/m) for level 4, 

5, 6, and 7 uniform grids and the adaptive quadtree grid.  (The CPU time is relative to that on 

the reference level 8 uniform grid).  By inspecting Figure 6, it can be seen that there is a 

substantial gain in accuracy at a given CPU time if one uses a dynamically adaptive quadtree 

grid instead of the corresponding resolution uniform grid.  The improved computational 

efficiency means that the present quadtree approach is useful at fast simulation of bed 

morphodynamics.  Moreover, by coarsening the grid in areas of little interest, the local 

constraint of the Courant condition on the time step is of course reduced.  

 

By comparing Figure 5 to Figure 3, it can be seen that the adaptive quadtree scheme provides 

a smoother prediction in the region beyond the dune (i.e. no depression in the bed in the lee 

of the crest of the dune). Numerical stability is improved and uncontrolled dispersion is 

avoided by using the dynamically adapted quadtree grid. 

 

Hudson and Sweby 
4
 investigated the sand dune evolution case by considering two 

approaches, a decoupled approach similar to that used here and a coupled approach with 
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20 yx  m. Hudson and Sweby declared that in 2D the decoupled approach seemed to 

provide an inaccurate prediction due to the presence of kinks and the difference in position 

and shape of the pulse. In the present paper, 8 level divisions are utilised with 86.5x m, 

91.3y m; however, an accurate prediction is obtained using the decoupled approach 

herein. This example confirms the need for grid resolution. 

 

4.3  Sand Pit 

The evolution of a sand pit with an horizontal erodible bed is considered as the third case. 

The initial bed profile is the mirror image of the dune profile. Again no approximate 

analytical solution is available.  The domain is 1500 × 1000 m.  The numerical model is first 

run to hydrodynamic steady state for a fixed bed using the same initial flow conditions as in 

the previous test.  However, the bed profile is: 
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The simulation is undertaken on an adaptive quadtree grid with the same criteria as the sand 

dune evolution. The simulation run time is until t = 20 hours.  Figure 7 shows the adapted 

quadtree grid, bed level contours and 3-D view at t = 10 h and 20 h; it can be seen that the pit 

evolves to have a very similar (but mirrored) shape to that of the sand dune.  The bed 

centreline profiles given in Figure 8 indicate that the dune crest migrates at a slightly faster 

rate than the trough of the pit.  This is to be expected because of feedback between the 

overlying flow speed and the local depth through continuity.  It should be noted that there is 

no account taken in the present bed load equation of the gravitational effects of bed slope.  

Inclusion of this effect would lead to additional differences between the dune and pit cases.  

 

5. CONCLUSIONS 

This paper has introduced a decoupled 2-D sediment transport model based on a Godunov-

type finite volume solver of the shallow water equations and a finite difference solver of the 

bed deformation equation, with empirical formulae used to estimate the sediment bed load.  

Validation was undertaken by comparison against an approximate analytical solution for a 
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benchmark case of the evolution of a sand bar, and reasonable agreement achieved, although 

the simulated crest was lower than the analytical solution due to the diffusivity of the first 

order upwind scheme. Further simulations have been presented of the morphodynamic 

evolution of a sand dune and a sand pit; it is found that the trough of the sand pit migrates at 

a slightly lower speed than the crest of a corresponding sand wave.  The use of dynamically 

adapted quadtree grids has led to a significant improvement in computational time while 

retaining accuracy (by comparison with simulations undertaken on a fixed uniform grid of 

corresponding resolution).  As would be expected, use of finer resolution (i.e. higher level) 

adaptive quadtree grids has enhanced the accuracy and detail of the solutions. The present 

approach is particularly well suited to applications involving long simulations in large 

shallow domains. It is recommended that future work be undertaken to enhance the 

numerical solver to include a higher-order upwind scheme (which will involve further cells 

in the discretisation template). 
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                                         (a)                                                     (b)  

 

Figure 1   2-D quadtree grids of sand bar initial state and at t = 238/A (A = 0.01) 

 

 

 

 

 
 

 

Figure 2   2-D sand bar evolution case: bed level profiles at t = 238/A (A = 0.01) 
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Figure 3   2-D sand dune case: contour and 3d view of initial bed state and bed 

evolution using upwind method at t = 20 h (A = 0.01) 
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Figure 4   2-D sand dune case: evolved bed contours at t = 20 h (A = 0.01) for 

different uniform grid division levels  
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Figure 5   2-D sand dune case: adapted quadtree grids, bed level contour and 3-D view at t = 

10 h and t = 20h (5 to 8 grid levels)  

 

 

 

 

 
 

Figure 6   Error and CPU time for 2-D sand dune case at t = 20 h (A = 0.01) for uniform grids 

at level 4, 5, 6, 7 and adaptive quadtree relative to a uniform grid at level 8 
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Figure 7   2-D sand hole case: adapted quadtree grids, bed level contour and 3-D view at t = 

10h and t = 20h (5 to 8 grid levels)  

 

 

 

 

 

 
 

Figure 8   Sand dune and sand hole evolution case: bed level profiles at t = 20h 

 


