55 research outputs found

    Efficient atomic clocks operated with several atomic ensembles

    Get PDF
    Atomic clocks are typically operated by locking a local oscillator (LO) to a single atomic ensemble. In this article we propose a scheme where the LO is locked to several atomic ensembles instead of one. This results in an exponential improvement compared to the conventional method and provides a stability of the clock scaling as (αN)m/2(\alpha N)^{-m/2} with NN being the number of atoms in each of the mm ensembles and α\alpha is a constant depending on the protocol being used to lock the LOComment: 10 pages, 8 figure

    Elementary test for non-classicality based on measurements of position and momentum

    Full text link
    We generalise a non-classicality test described by Kot et al. [Phys. Rev. Lett. 108, 233601 (2010)], which can be used to rule out any classical description of a physical system. The test is based on measurements of quadrature operators and works by proving a contradiction with the classical description in terms of a probability distribution in phase space. As opposed to the previous work, we generalise the test to include states without rotational symmetry in phase space. Furthermore, we compare the performance of the non-classicality test with classical tomography methods based on the inverse Radon transform, which can also be used to establish the quantum nature of a physical system. In particular, we consider a non-classicality test based on the so-called filtered back-projection formula. We show that the general non-classicality test is conceptually simpler, requires less assumptions on the system and is statistically more reliable than the tests based on the filtered back-projection formula. As a specific example, we derive the optimal test for a quadrature squeezed single photon state and show that the efficiency of the test does not change with the degree of squeezing

    Near Heisenberg limited atomic clocks in the presence of decoherence

    Get PDF
    The ultimate stability of atomic clocks is limited by the quantum noise of the atoms. To reduce this noise it has been suggested to use entangled atomic ensembles with reduced atomic noise. Potentially this can push the stability all the way to the limit allowed by the Heisenberg uncertainty relation, which is denoted the Heisenberg limit. In practice, however, entangled states are often more prone to decoherence, which may prevent reaching this performance. Here we present an adaptive measurement protocol that in the presence of a realistic source of decoherence enables us to get near Heisenberg limited stability of atomic clocks using entangled atoms. The protocol may thus realize the full potential of entanglement for quantum metrology despite the detrimental influence of decoherence.Comment: 13 pages, 9 figures. Note that new reference: Y. Matsuzaki, S. C. Benjamin, and J. Fitzsimons, Phys. Rev. A 84, 012103 (2011) is adde

    Super sensitivity and super resolution with quantum teleportation

    Get PDF
    We propose a method for quantum enhanced phase estimation based on continuous variable (CV) quantum teleportation. The phase shift probed by a coherent state can be enhanced by repeatedly teleporting the state back to interact with the phase shift again using a supply of two-mode squeezed vacuum states. In this way, both super resolution and super sensitivity can be obtained due to the coherent addition of the phase shift. The protocol enables Heisenberg limited sensitivity and super- resolution given sufficiently strong squeezing. The proposed method could be implemented with current or near-term technology of CV teleportation.Comment: 5 pagers, 3 figure

    Quantum-Assisted Telescope Arrays

    Get PDF
    Quantum networks provide a platform for astronomical interferometers capable of imaging faint stellar objects. In a recent work [arXiv:1809.01659], we presented a protocol that circumvents transmission losses with efficient use of quantum resources and modest quantum memories. Here we analyze a number of extensions to that scheme. We show that it can be operated as a truly broadband interferometer and generalized to multiple sites in the array. We also analyze how imaging based on the quantum Fourier transform provides improved signal-to-noise ratio compared to classical processing. Finally, we discuss physical realizations including photon-detection-based quantum state transfer.Comment: 10 pages, 8 figures; v2 - clarifications and references; v3 - close to published versio

    One- and two-axis squeezing of atomic ensembles in optical cavities

    Get PDF
    The strong light-matter coupling attainable in optical cavities enables the generation of highly squeezed states of atomic ensembles. It was shown in [Phys. Rev. A 66, 022314 (2002)] how an effective one-axis twisting Hamiltonian can be realized in a cavity setup. Here, we extend this work and show how an effective two-axis twisting Hamiltonian can be realized in a similar cavity setup. We compare the two schemes in order to characterize their advantages. In the absence of decoherence, the two-axis Hamiltonian leads to more squeezing than the one-axis Hamiltonian. If limited by decoherence from spontaneous emission and cavity decay, we find roughly the same level of squeezing for the two schemes scaling as (NC)^(1/2) where C is the single atom cooperativity and N is the total number of atoms. When compared to an ideal squeezing operation, we find that for specific initial states, a dissipative version of the one-axis scheme attains higher fidelity than the unitary one-axis scheme or the two-axis scheme. However, the unitary one-axis and two-axis schemes perform better for general initial states.Comment: 13 pages, 6 figure

    Topological Quantum Optics in Two-Dimensional Atomic Arrays

    Get PDF
    We demonstrate that two-dimensional atomic emitter arrays with subwavelength spacing constitute topologically protected quantum optical systems where the photon propagation is robust against large imperfections while losses associated with free space emission are strongly suppressed. Breaking time-reversal symmetry with a magnetic field results in gapped photonic bands with non-trivial Chern numbers and topologically protected, long-lived edge states. Due to the inherent nonlinearity of constituent emitters, such systems provide a platform for exploring quantum optical analogues of interacting topological systems.Comment: 11 pages and 9 figures; paper updated to match published versio

    Optical Interferometry with Quantum Networks

    Get PDF
    We propose a method for optical interferometry in telescope arrays assisted by quantum networks. In our approach, the quantum state of incoming photons along with an arrival time index is stored in a binary qubit code at each receiver. Nonlocal retrieval of the quantum state via entanglement-assisted parity checks at the expected photon arrival rate allows for direct extraction of the phase difference, effectively circumventing transmission losses between nodes. Compared to prior proposals, our scheme (based on efficient quantum data compression) offers an exponential decrease in required entanglement bandwidth. Experimental implementation is then feasible with near-term technology, enabling optical imaging of astronomical objects akin to well-established radio interferometers and pushing resolution beyond what is practically achievable classically.Comment: 7 + 6 pages, 3 + 1 figures; v2 - clarifications and further discussion of implementation; v3 - close to published versio
    corecore