4 research outputs found

    Influence of hyperbaric oxygen therapy on bone metabolism in patients with neoplasm

    Get PDF
    Background: Hyperbaric oxygen therapy (HBOT) is useful in the treatment of complications due to radiotherapy in patients with neoplasm. Its effects on bone metabolism are unclear. In our study, we analyzed the effects of HBOT on bone remodeling in oncological patients with radiotherapy. Materials and methods: Prospective clinical study in 23 patients with neoplasms undergoing treatment with HBOT due to complications of radiotherapy (hemorrhagic cystitis, proctitis or radionecrosis) and 25 patients with chronic anal fissure. The average number of HBOT sessions was 20 ± 5 (100% oxygen, 2.3 atmospheres and 90 min per day). Serum levels of aminoterminal propeptide of type I collagen (P1NP), C terminal telopeptide of type I collagen (CTX), alkaline phosphatase (AP), 25hydroxyvitamin D (25-OHD), parathyroid hormone (PTH), were measured at 3 time points: T0 (before beginning HBOT), T1 (at the end of HBOT) and T2 (6 months after HBOT). Results: At baseline, the patients with neoplasm have higher bone turnover than those with anal fissure. These differences were 41% in CTX (0.238 ± 0.202 ng/mL in neoplasm and 0.141 ± 0.116 ng/mL in fissure; p = 0.04), 30% for PTH (46 ± 36 pg/mL in neoplasm and 32 ± 17 pg/mL in fissure; p = 0.04) and 15% for alkaline phosphatase (80 ± 24 U/L in neoplasm and 68 ± 16 U/L in fissure; p = 0.04). In the group with neoplasm, the values of P1NP decreased 6% after HBOT (T0: 49 ± 31 ng/mL, T2: 46 ± 12 ng/mL; p = 0.03). Also, there were non-significant decreases in PTH (–34%) and CTX (–30%). Conclusions: Patients with neoplasm and complications with radiotherapy have an increase in bone remodeling that may be diminished after HBOT

    Hyperbaric Oxygen Therapy Does Not Have a Negative Impact on Bone Signaling Pathways in Humans

    Get PDF
    Introduction: Oxygen is emerging as an important factor in the local regulation of bone remodeling. Some preclinical data suggest that hyperoxia may have deleterious effects on bone cells. However, its clinical relevance is unclear. Hence, we studied the effect of hyperbaric oxygen therapy (HBOT) on serum biomarkers reflecting the status of the Wnt and receptor activator of NF-?B ligand (RANKL) pathways, two core pathways for bone homeostasis. Materials and methods: This was a prospective study of 20 patients undergoing HBOT (mean age 58 yrs., range 35?82 yrs.) because of complications of radiotherapy or chronic anal fissure. Patients were subjected to HBOT (100% oxygen; 2.4 atmospheres absolute for 90 min). The average number of HBOT sessions was 20 ± 5 (range 8?31). Serum hypoxia-inducible factor 1-? (HIF1-?), osteoprotegerin (OPG), RANKL, and the Wnt inhibitors sclerostin and dickkopf-1 (DKK1) were measured at baseline and after HBOT by using specific immunoassays. Results: HIF-1? in eight patients with measurable serum levels increased from 0.084 (0.098) ng/mL at baseline to 0.146 (0.130) ng/mL after HBOT (p = 0.028). However, HBOT did not induce any significant changes in the serum levels of OPG, RANKL, sclerostin or DKK1. This was independent of the patients? diagnosis, either neoplasia or benign. Conclusion: Despite the potential concerns about hyperoxia, we found no evidence that HBOT has any detrimental effect on bone homeostasis

    Hyperbaric Oxygen Therapy Does Not Have a Negative Impact on Bone Signaling Pathways in Humans

    No full text
    Introduction: Oxygen is emerging as an important factor in the local regulation of bone remodeling. Some preclinical data suggest that hyperoxia may have deleterious effects on bone cells. However, its clinical relevance is unclear. Hence, we studied the effect of hyperbaric oxygen therapy (HBOT) on serum biomarkers reflecting the status of the Wnt and receptor activator of NF-κB ligand (RANKL) pathways, two core pathways for bone homeostasis. Materials and methods: This was a prospective study of 20 patients undergoing HBOT (mean age 58 yrs., range 35–82 yrs.) because of complications of radiotherapy or chronic anal fissure. Patients were subjected to HBOT (100% oxygen; 2.4 atmospheres absolute for 90 min). The average number of HBOT sessions was 20 ± 5 (range 8–31). Serum hypoxia-inducible factor 1-α (HIF1-α), osteoprotegerin (OPG), RANKL, and the Wnt inhibitors sclerostin and dickkopf-1 (DKK1) were measured at baseline and after HBOT by using specific immunoassays. Results: HIF-1α in eight patients with measurable serum levels increased from 0.084 (0.098) ng/mL at baseline to 0.146 (0.130) ng/mL after HBOT (p = 0.028). However, HBOT did not induce any significant changes in the serum levels of OPG, RANKL, sclerostin or DKK1. This was independent of the patients’ diagnosis, either neoplasia or benign. Conclusion: Despite the potential concerns about hyperoxia, we found no evidence that HBOT has any detrimental effect on bone homeostasis
    corecore