22 research outputs found

    Suppression in Pb-Pb Collisions at the LHC.

    Get PDF
    The production of the ψ(2S) charmonium state was measured with ALICE in Pb-Pb collisions at sqrt[s_{NN}]=5.02  TeV, in the dimuon decay channel. A significant signal was observed for the first time at LHC energies down to zero transverse momentum, at forward rapidity (2.5<y<4). The measurement of the ratio of the inclusive production cross sections of the ψ(2S) and J/ψ resonances is reported as a function of the centrality of the collisions and of transverse momentum, in the region p_{T}<12  GeV/c. The results are compared with the corresponding measurements in pp collisions, by forming the double ratio [σ^{ψ(2S)}/σ^{J/ψ}]_{Pb-Pb}/[σ^{ψ(2S)}/σ^{J/ψ}]_{pp}. It is found that in Pb-Pb collisions the ψ(2S) is suppressed by a factor of ∼2 with respect to the J/ψ. The ψ(2S) nuclear modification factor R_{AA} was also obtained as a function of both centrality and p_{T}. The results show that the ψ(2S) resonance yield is strongly suppressed in Pb-Pb collisions, by a factor of up to ∼3 with respect to pp. Comparisons of cross section ratios with previous Super Proton Synchrotron findings by the NA50 experiment and of R_{AA} with higher-p_{T} results at LHC energy are also reported. These results and the corresponding comparisons with calculations of transport and statistical models address questions on the presence and properties of charmonium states in the quark-gluon plasma formed in nuclear collisions at the LHC

    Search for jet quenching effects in high-multiplicity pp collisions at √s=13 TeV via di-jet acoplanarity

    No full text

    Measurements of long-range two-particle correlation over a wide pseudorapidity range in p-Pb collisions at √sNN=5.02 TeV

    No full text

    Measurements of jet quenching using semi-inclusive hadron plus jet distributions in pp and central Pb-Pb collisions at √sNN=5.02 TeV

    No full text

    Charm production and fragmentation fractions at midrapidity in pp collisions at √s=13 TeV

    No full text

    Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at √s=13 TeV and in p-Pb collisions at √sNN=5.02 TeV

    No full text

    Prompt and non-prompt J/ψ production at midrapidity in Pb-Pb collisions at √sNN=5.02 TeV

    No full text

    Modification of charged-particle jets in event-shape engineered Pb–Pb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">NN</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>5.02</mml:mn></mml:math> TeV

    Get PDF
    Charged-particle jet yields have been measured in semicentral Pb–Pb collisions at center-of-mass energy per nucleon–nucleon collision sNN=5.02 TeV with the ALICE detector at the LHC. These yields are reported as a function of the jet transverse momentum, and further classified by their angle with respect to the event plane and the event shape, characterized by ellipticity, in an effort to study the path-length dependence of jet quenching. Jets were reconstructed at midrapidity from charged-particle tracks using the anti-kT algorithm with resolution parameters R = 0.2 and 0.4, with event-plane angle and event-shape values determined using information from forward scintillating detectors. The results presented in this letter show that, in semicentral Pb–Pb collisions, there is no significant difference between jet yields in predominantly isotropic and elliptical events. However, out-of-plane jets are observed to be more suppressed than in-plane jets. Further, this relative suppression is greater for low transverse momentum (< 50 GeV/c) R = 0.2 jets produced in elliptical events, with out-of-plane to in-plane jet-yield ratios varying up to 5.2σ between different event-shape classes. These results agree with previous studies indicating that jets experience azimuthally anisotropic suppression when traversing the QGP medium, and can provide additional constraints on the path-length dependence of jet energy loss

    Measurement of the low-energy antitriton inelastic cross section

    No full text
    In this Letter, the first measurement of the inelastic cross section for antitriton–nucleus interactions is reported, covering the momentum range of 0.8≤p<2.4 GeV/c. The measurement is carried out using data recorded with the ALICE detector in pp and Pb–Pb collisions at a centre-of-mass energy per nucleon of 13 TeV and 5.02 TeV, respectively. The detector material serves as an absorber for antitriton nuclei. The raw yield of (anti)triton nuclei measured with the ALICE apparatus is compared to the results from detailed ALICE simulations based on the [Formula presented] toolkit for the propagation of (anti)particles through matter, allowing one to quantify the inelastic interaction probability in the detector material. This analysis complements the measurement of the inelastic cross section of antinuclei up to A=3 carried out by the ALICE Collaboration, and demonstrates the feasibility of the study of the isospin dependence of inelastic interaction cross section with the analysis techniques presented in this Letter

    Measurement of the radius dependence of charged-particle jet suppression in Pb–Pb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">NN</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>5.02</mml:mn><mml:mspace width="0.25em"/><mml:mtext>TeV</mml:mtext></mml:math>

    No full text
    The ALICE Collaboration reports a differential measurement of inclusive jet suppression using pp and Pb–Pb collision data at a center-of-mass energy per nucleon–nucleon collision sNN=5.02 TeV. Charged-particle jets are reconstructed using the anti-kT algorithm with resolution parameters R=0.2, 0.3, 0.4, 0.5, and 0.6 in pp collisions and R=0.2, 0.4, 0.6 in central (0–10%), semi-central (30–50%), and peripheral (60–80%) Pb–Pb collisions. A novel approach based on machine learning is employed to mitigate the influence of jet background. This enables measurements of inclusive jet suppression in new regions of phase space, including down to the lowest jet pT≥40 GeV/c at R=0.6 in central Pb–Pb collisions. This is an important step for discriminating different models of jet quenching in the quark–gluon plasma. The transverse momentum spectra, nuclear modification factors, derived cross section, and nuclear modification factor ratios for different jet resolution parameters of charged-particle jets are presented and compared to model predictions. A mild dependence of the nuclear modification factor ratios on collision centrality and resolution parameter is observed. The results are compared to a variety of jet-quenching models with varying levels of agreement
    corecore