2 research outputs found

    Very high-energy γ-ray observations of the Crab nebula and other potential sources with the GRAAL experiment

    Get PDF
    The “γ-ray astronomy at Almeria” (GRAAL) experiment uses 63 heliostat-mirrors with a total mirror area of ≈2500 m2 from the CESA-1 field at the “Plataforma Solar de Almeria” to collect Cherenkov light from air showers. The detector is located in a central solar tower and detects photon-induced showers with an energy threshold of 250±110 GeV and an asymptotic effective detection area of about 15 000 m2. A comparison between the results of detailed Monte-Carlo simulations and data is presented. Data sets taken in the period September 1999–September 2000 in the direction of the Crab pulsar, the active galaxy 3C 454.3, the unidentified γ-ray source 3EG J1835+59 and a “pseudosource” were analyzed for high energy γ-ray emission. Evidence for a γ-ray flux from the Crab pulsar with an integral flux of 2.2±0.4 above threshold and a significance of 4.5σ in a total measuring time of 7 h and 10 min on source was found. No evidence for emission from the other sources was found. Some difficulties with the use of heliostat fields for γ-ray astronomy are pointed out. In particular the effect of field-of-view restricted to the central part of a detected air shower on the lateral distribution and timing properties of Cherenkov light are discussed. Upon restriction the spread of the timing front of proton-induced showers sharply decreases and the reconstructed direction becomes biased towards the pointing direction. This is shown to make efficient γ-hadron separation difficult

    The GRAAL Project

    Get PDF
    26th International Cosmic Ray Conference Salt Lake City, Utah August 17-25,1999The GRAAL Project (Gamma Ray Astronomy at ALmeria) makes use of the CESA-1 heliostat field at the “Plataforma Solar de Almeria” (Spain) as a gamma-ray telescope with an energy threshold of about 100 GeV. Cherenkov light generated by EAS is reflected by the heliostats and collected into photomultipliers (PMTs) with nonimaging secondary optics. Each PMT collects the light reflected by 13 - 18 heliostats of 40 m2 using a Winston cone. After successful tests with two collecting cones, a more advanced setup on a dedicated platform, using four collectors and 63 heliostats (total reflecting area of about 2500 m2 ) is being installed. A description of this setup together with Monte Carlo results about its excellent capabilities in the precise determination of pulse arrival times are presented
    corecore