99 research outputs found
Port-site metastasis following robotic-assisted radical hysterectomy for squamous cell cervical cancer
► Port-site metastases can occur following treatment for cervical cancer. ► Port-site metastases can occur following robotic assisted laparoscopic surgery. ► The pathogenesis of port-site metastases is poorly understood
Recommended from our members
MolBioLib: A C++11 Framework for Rapid Development and Deployment of Bioinformatics Tasks
Summary: We developed MolBioLib to address the need for adaptable next-generation sequencing analysis tools. The result is a compact, portable and extensively tested C++11 software framework and set of applications tailored to the demands of next-generation sequencing data and applicable to many other applications. MolBioLib is designed to work with common file formats and data types used both in genomic analysis and general data analysis. A central relational-database-like Table class is a flexible and powerful object to intuitively represent and work with a wide variety of tabular datasets, ranging from alignment data to annotations. MolBioLib has been used to identify causative single-nucleotide polymorphisms in whole genome sequencing, detect balanced chromosomal rearrangements and compute enrichment of messenger RNAs (mRNAs) on microtubules, typically requiring applications of under 200 lines of code. MolBioLib includes programs to perform a wide variety of analysis tasks, such as computing read coverage, annotating genomic intervals and novel peak calling with a wavelet algorithm. Although MolBioLib was designed primarily for bioinformatics purposes, much of its functionality is applicable to a wide range of problems. Complete documentation and an extensive automated test suite are provided
Identification and characterization of layilin, a talin-binding transmembrane protein
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Biology, 1999.Includes bibliographical references (p. 206-233).by Mark Lee Borowsky.Ph.D
Multiplexed Illumina sequencing libraries from picogram quantities of DNA
Background: High throughput sequencing is frequently used to discover the location of regulatory interactions on chromatin. However, techniques that enrich DNA where regulatory activity takes place, such as chromatin immunoprecipitation (ChIP), often yield less DNA than optimal for sequencing library preparation. Existing protocols for picogram-scale libraries require concomitant fragmentation of DNA, pre-amplification, or long overnight steps. Results: We report a simple and fast library construction method that produces libraries from sub-nanogram quantities of DNA. This protocol yields conventional libraries with barcodes suitable for multiplexed sample analysis on the Illumina platform. We demonstrate the utility of this method by constructing a ChIP-seq library from 100 pg of ChIP DNA that demonstrates equivalent genomic coverage of target regions to a library produced from a larger scale experiment. Conclusions: Application of this method allows whole genome studies from samples where material or yields are limiting
Recommended from our members
The Microglial Sensome Revealed by Direct RNA Sequencing
Microglia, the principal neuroimmune sentinels of the brain, continuously sense changes in their environment and respond to invading pathogens, toxins and cellular debris. Microglia exhibit plasticity and can assume neurotoxic or neuroprotective priming states that determine their responses to danger. We used direct RNA sequencing, without amplification or cDNA synthesis, to determine the quantitative transcriptomes of microglia of healthy adult and aged mice. We validated our findings by fluorescent dual in-situ hybridization, unbiased proteomic analysis and quantitative PCR. We report here that microglia have a distinct transcriptomic signature and express a unique cluster of transcripts encoding proteins for sensing endogenous ligands and microbes that we term the “sensome”. With aging, sensome transcripts for endogenous ligand recognition are downregulated, whereas those involved in microbe recognition and host defense are upregulated. In addition, aging is associated with an overall increase in expression of microglial genes involved in neuroprotection
Satb1 overexpression drives tumor-promoting activities in cancer-associated dendritic cells
Special AT-rich sequence-binding protein 1 (Satb1) governs genome-wide transcriptional programs. Using a conditional knockout mouse, we find that Satb1 is required for normal differentiation of conventional dendritic cells (DCs). Furthermore, Satb1 governs the differentiation of inflammatory DCs by regulating major histocompatibility complex class II (MHC II) expression through Notch1 signaling. Mechanistically, Satb1 binds to the Notch1 promoter, activating Notch expression and driving RBPJ occupancy of the H2-Ab1 promoter, which activates MHC II transcription. However, tumor-driven, unremitting expression of Satb1 in activated Zbtb46(+) inflammatory DCs that infiltrate ovarian tumors results in an immunosuppressive phenotype characterized by increased secretion of tumor-promoting Galectin-1 and IL-6. In vivo silencing of Satb1 in tumor-associated DCs reverses their tumorigenic activity and boosts protective immunity. Therefore, dynamic fluctuations in Satb1 expression govern the generation and immunostimulatory activity of steady-state and inflammatory DCs, but continuous Satb1 overexpression in differentiated DCs converts them into tolerogenic/pro-inflammatory cells that contribute to malignant progression.Fil: Tesone, Amelia J.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Rutkowski, Melanie R.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Brencicova, Eva. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Svoronos, Nikolaos. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Perales Puchal, Alfredo. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Stephen, Tom L.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Allegrezza, Michael J.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Payne, Kyle K.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Nguyen, Jenny M.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Wickramasinghe, Jayamanna. The Wistar Institute. Center for Systems and Computational Biology; Estados UnidosFil: Tchou, Julia. University of Pennsylvania; Estados UnidosFil: Borowsky, Mark E.. Christiana Care Health System. Helen F. Graham Cancer Center; Estados UnidosFil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Kossenkov, Andrew V.. The Wistar Institute. Center for Systems and Computational Biology; Estados UnidosFil: Conejo Garcia, José R.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados Unido
Recommended from our members
Atypical Case Of Wolfram Syndrome Revealed Through Targeted Exome Sequencing In A Patient With Suspected Mitochondrial Disease
Background: Mitochondrial diseases comprise a diverse set of clinical disorders that affect multiple organ systems with varying severity and age of onset. Due to their clinical and genetic heterogeneity, these diseases are difficult to diagnose. We have developed a targeted exome sequencing approach to improve our ability to properly diagnose mitochondrial diseases and apply it here to an individual patient. Our method targets mitochondrial DNA (mtDNA) and the exons of 1,600 nuclear genes involved in mitochondrial biology or Mendelian disorders with multi-system phenotypes, thereby allowing for simultaneous evaluation of multiple disease loci. Case Presentation: Targeted exome sequencing was performed on a patient initially suspected to have a mitochondrial disorder. The patient presented with diabetes mellitus, diffuse brain atrophy, autonomic neuropathy, optic nerve atrophy, and a severe amnestic syndrome. Further work-up revealed multiple heteroplasmic mtDNA deletions as well as profound thiamine deficiency without a clear nutritional cause. Targeted exome sequencing revealed a homozygous c.1672C > T (p.R558C) missense mutation in exon 8 of WFS1 that has previously been reported in a patient with Wolfram syndrome. Conclusion: This case demonstrates how clinical application of next-generation sequencing technology can enhance the diagnosis of patients suspected to have rare genetic disorders. Furthermore, the finding of unexplained thiamine deficiency in a patient with Wolfram syndrome suggests a potential link between WFS1 biology and thiamine metabolism that has implications for the clinical management of Wolfram syndrome patients
Recommended from our members
Small RNA pathway genes identified by patterns of phylogenetic conservation and divergence
Genetic and biochemical analyses of RNA interference (RNAi) and microRNA (miRNA) pathways have revealed proteins such as Argonaute/PIWI and Dicer that process and present small RNAs to their targets. Well validated small RNA pathway cofactors, such as the Argonaute/PIWI proteins show distinctive patterns of conservation or divergence in particular animal, plant, fungal, and protist species. We compared 86 divergent eukaryotic genome sequences to discern sets of proteins that show similar phylogenetic profiles with known small RNA cofactors. A large set of additional candidate small RNA cofactors have emerged from functional genomic screens for defects in miRNA- or siRNA-mediated repression in C. elegans and D. melanogaster1,2 and from proteomic analyses of proteins co-purifying with validated small RNA pathway proteins3,4. The phylogenetic profiles of many of these candidate small RNA pathway proteins are similar to those of known small RNA cofactor proteins. We used a Bayesian approach to integrate the phylogenetic profile analysis with predictions from diverse transcriptional coregulation and proteome interaction datasets to assign a probability for each protein for a role in a small RNA pathway. Testing high-confidence candidates from this analysis for defects in RNAi silencing, we found that about half of the predicted small RNA cofactors are required for RNAi silencing. Many of the newly identified small RNA pathway proteins are orthologues of proteins implicated in RNA splicing. In support of a deep connection between the mechanism of RNA splicing and small RNA-mediated gene silencing, the presence of the Argonaute proteins and other small RNA components in the many species analysed strongly correlates with the number of introns in that species
- …