7 research outputs found

    ΠŸΠ°Ρ€Π°ΠΎΠΊΡΠΎΠ½Π°Π·Π°: ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ΠΎΡ€ антиоксидантной Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°

    Get PDF
    The paraoxonase (PON) gene family includes three members: PON1, PON2, and PON3 aligned in tandem on chromosome 7 in humans. All PON proteins share considerable structural homology and have the capacity to protect cells from oxidative stress; therefore, they have been implicated in the pathogenesis of several inflammatory diseases, particularly atherosclerosis. Increased production of reactive oxygen species as a result of decreased activities of mitochondrial electron transport chain complexes plays a role in the development of many inflammatory diseases, including atherosclerosis. PON1 and PON3 proteins can be detected in plasma and reside in the high-density lipoprotein fraction and protect against oxidative stress by hydrolyzing certain oxidized lipids in lipoproteins, macrophages, and atherosclerotic lesions. Paraoxonase 2 (PON2) possesses antiatherogenic properties and is associated with lower ROS levels. PON2 is involved in the antioxidative and anti-inflammatory response in intestinal epithelial cells. In contrast to PON1 and PON3, PON2 is cell-associated and is not found in plasma. It is widely expressed in a variety of tissues, including the kidney, and protects against cellular oxidative stress. Overexpression of PON2 reduces oxidative status, prevents apoptosis in vascular endothelial cells, and inhibits cell-mediated low density lipoprotein oxidation. PON2 also inhibits the development of atherosclerosis, via mechanisms involving the reduction of oxidative stress. In this review we explore the physiological roles of PON in disease development and modulation of PONs by infective (bacterial, viral) agents.ΠŸΠ°Ρ€Π°ΠΎΠΊΡΠΎΠ½Π°Π·Ρ‹ – это сСмСйство Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ², прСдставлСнноС PON1, PON2 ΠΈ PON3, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ ΡˆΠΈΡ€ΠΎΠΊΠΎΠΉ ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ каталитичСской ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ. PON1 ΠΈ PON3 Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‚ Π² ΠΏΠ»Π°Π·ΠΌΠ΅ Π² состоянии, связанном с Π»ΠΈΠΏΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°ΠΌΠΈ высокой плотности, ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π°ΡŽΡ‚ окислСниС Π»ΠΈΠΏΡ€ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΎΠ², ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°ΡŽΡ‚ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π»ΠΈΠΏΠΈΠ΄Π½Ρ‹Ρ… пСроксидов ΠΈ ΡΠ½ΠΈΠΆΠ°ΡŽΡ‚ риск развития атСросклСроза. PON2 являСтся Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠΌ ΠΈ Π½Π΅ обнаруТиваСтся Π² ΠΏΠ»Π°Π·ΠΌΠ΅. Β PON2 ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… тканях ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΠΏΠ΅Ρ‡Π΅Π½ΡŒ, Π»Π΅Π³ΠΊΠΈΠ΅, Ρ‚Ρ€Π°Ρ…Π΅ΡŽ, ΠΏΠΎΡ‡ΠΊΠΈ, сСрдцС, ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΡƒΡŽ ΠΆΠ΅Π»Π΅Π·Ρƒ, Ρ‚ΠΎΠ½ΠΊΠΈΠΉ ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊ, ΠΌΡ‹ΡˆΡ†Ρ‹, сСмСнники ΠΈ ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ. PON2 Ρ‚Π°ΠΊΠΆΠ΅ присутствуСт Π² дофаминСргичСских областях Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΈ Π² астроцитах. На субклСточном ΡƒΡ€ΠΎΠ²Π½Π΅, PON2 локализуСтся Π² митохондриях, Π³Π΄Π΅ ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π°Π΅Ρ‚ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ Ρ‚Ρ€ΠΈΠ³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ΄ΠΎΠ² ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ стрСсса. PON3 - послСдняя ΠΈΠ· ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹Ρ… параоксоназ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠΉ антиксидантной Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ. PON3 ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΊΠΎΠΆΠΈ, ΡΠ»ΡŽΠ½Π½Ρ‹Ρ… ΠΆΠ΅Π»Π΅Π·Π°Ρ…, ТСлСзистом эпитСлии ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ°, ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ°, эндомСтрии, Π³Π΅ΠΏΠ°Ρ‚ΠΎΡ†ΠΈΡ‚Π°Ρ…,Β  ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΏΠΎΠ΄ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹, сСрдцС, ΠΆΠΈΡ€ΠΎΠ²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΈ Π² Π»Π΅Π³ΠΎΡ‡Π½ΠΎΠΌ эпитСлии. PON3 нСдостаточно ΠΈΠ·ΡƒΡ‡Π΅Π½Π°, Π½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ Π΅Π΅ антиоксидантноС, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠ΅ дСйствиС  Π·Π° счСт блокирования ΠΊΠ²ΠΎΡ€ΡƒΠΌ-зависимых систСм Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ. Π˜Π·Π±Ρ‹Ρ‚ΠΎΡ‡Π½Π°Ρ экспрСссия PON3 ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ атСросклСротичСских бляшСк ΠΈ прСпятствуСт Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ оТирСния, количСство PON3 увСличиваСтся ΠΏΡ€ΠΈ онкологичСских заболСваниях, ΠΏΠΎΠ²Ρ‹ΡˆΠ°Ρ сопротивлСниС ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΊ оксидативному стрСссу ΠΈ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Ρƒ. Π’ ΠΎΠ±Π·ΠΎΡ€Π΅ прСдставлСна информация ΠΎ физиологичСской Ρ€ΠΎΠ΄ΠΈ параоксоназ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΡ… участии Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, ассоциированных с ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ стрСссом (атСросклСроз, эндомСтриоз, болСзнь ΠŸΠ°Ρ€ΠΊΠΈΠ½ΡΠΎΠ½Π°, Ρ†ΠΈΡ€Ρ€ΠΎΠ· ΠΏΠ΅Ρ‡Π΅Π½ΠΈ, Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ вирусныС ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ ΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅ процСссы)

    Paraoxonase: The universal factor of antioxidant defense in Human Body

    No full text
    The paraoxonase (PON) gene family includes three members: PON1, PON2, and PON3 aligned in tandem on chromosome 7 in humans. All PON proteins share considerable structural homology and have the capacity to protect cells from oxidative stress; therefore, they have been implicated in the pathogenesis of several inflammatory diseases, particularly atherosclerosis. Increased production of reactive oxygen species as a result of decreased activities of mitochondrial electron transport chain complexes plays a role in the development of many inflammatory diseases, including atherosclerosis. PON1 and PON3 proteins can be detected in plasma and reside in the high-density lipoprotein fraction and protect against oxidative stress by hydrolyzing certain oxidized lipids in lipoproteins, macrophages, and atherosclerotic lesions. Paraoxonase 2 (PON2) possesses antiatherogenic properties and is associated with lower ROS levels. PON2 is involved in the antioxidative and anti-inflammatory response in intestinal epithelial cells. In contrast to PON1 and PON3, PON2 is cell-associated and is not found in plasma. It is widely expressed in a variety of tissues, including the kidney, and protects against cellular oxidative stress. Overexpression of PON2 reduces oxidative status, prevents apoptosis in vascular endothelial cells, and inhibits cell-mediated low density lipoprotein oxidation. PON2 also inhibits the development of atherosclerosis, via mechanisms involving the reduction of oxidative stress. In this review we explore the physiological roles of PON in disease development and modulation of PONs by infective (bacterial, viral) agents

    Paraoxonase: The universal factor of antioxidant defense in Human Body

    No full text
    The paraoxonase (PON) gene family includes three members: PON1, PON2, and PON3 aligned in tandem on chromosome 7 in humans. All PON proteins share considerable structural homology and have the capacity to protect cells from oxidative stress; therefore, they have been implicated in the pathogenesis of several inflammatory diseases, particularly atherosclerosis. Increased production of reactive oxygen species as a result of decreased activities of mitochondrial electron transport chain complexes plays a role in the development of many inflammatory diseases, including atherosclerosis. PON1 and PON3 proteins can be detected in plasma and reside in the high-density lipoprotein fraction and protect against oxidative stress by hydrolyzing certain oxidized lipids in lipoproteins, macrophages, and atherosclerotic lesions. Paraoxonase 2 (PON2) possesses antiatherogenic properties and is associated with lower ROS levels. PON2 is involved in the antioxidative and anti-inflammatory response in intestinal epithelial cells. In contrast to PON1 and PON3, PON2 is cell-associated and is not found in plasma. It is widely expressed in a variety of tissues, including the kidney, and protects against cellular oxidative stress. Overexpression of PON2 reduces oxidative status, prevents apoptosis in vascular endothelial cells, and inhibits cell-mediated low density lipoprotein oxidation. PON2 also inhibits the development of atherosclerosis, via mechanisms involving the reduction of oxidative stress. In this review we explore the physiological roles of PON in disease development and modulation of PONs by infective (bacterial, viral) agents

    Placental vasculogenesis and angiogenesis in women undergoing chemotherapy

    No full text
    Yu.E. Dobrokhotova1,&nbsp;E.I. Borovkova1, A.M. Arutyunyan1, S.Zh. Danelyan2, E.M. Malysheva2, N.V. Zharkov2,3, T.N. Aksenova2 1 Pirogov Russian National Research Medical University, Moscow, Russian Federation 2City Clinical Hospital No. 40, Moscow, Russian Federation 3 I.M.&nbsp;Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation Aim: to study placental vasculogenesis and angiogenesis in women receiving chemotherapy. Patients and Methods: placental structure was examined in 57 pregnant women aged 22–38 years who were subdivided into 3 groups, i.e., women with malignancies receiving or not receiving chemotherapy and healthy controls. The slices of the central part of placentas collected after childbirth were examined. Immunohistochemistry (IHC) was performed after standard histology. IHC intensity was assessed for CD31 and CD34. In addition to IHC intensity, the number of positive cells per field of view was calculated for VEGF, VEGFR1, and VEGFR2. Mean counts of positive cells separately for epithelial and stromal cells were calculated for eNOS. Results: in the control group, the maturity of the placental villous tree matched the gestational age. Meanwhile, in 100% of pregnant women with malignancies receiving chemotherapy and in 46.8% of pregnant women with malignancies not receiving chemot herapy, the maturity of the placental villous tree was 2–4 weeks behind the gestational age. IHC revealed no significant differences in the placental concentrations of CD31, CD39, eNOS, VEGF, VEGFR1, and VEGFR2 between women with malignancies not receiving chemotherapy and the controls. In women receiving chemotherapy, IHC intensity and the number of positive cells were twice as high as in the control group. The activity of VEGFR1 and VEGFR2 was 11 times higher and 1.4 times higher, respectively, than in the control group. The mean number of cells expressing VEGFR1 and VEGFR2 per field of view increased by 1.5 times and 1.7 times, respectively. In addition, 1.6-fold reduction in CD31 level and 1.3-fold reduction in CD34 level as well as 1.4-fold increase in epithelial Π΅NOS level and 1.3-fold increase in stromal eNOS level were revealed. Conclusions: our findings on IHC distribution of the expression of VEGF and its recep-tors in the placental tissue of pregnant women undergoing cytostatic chemotherapy in part illus-trate the processes of the compensation and impaired functioning of the mother-placenta-fetus system in pre-placental hypoxia. Keywords: angiogenesis, vasculogenesis, vascular growth factor, chemotherapy, hypoxia, placental insufficiency. For citation:&nbsp;Yu.E. Dobrokhotova,&nbsp;Borovkova E.I., Arutyunyan A.M., Danelyan S.Zh. et al. Placental vasculogenesis and angiogenesis in women undergoing chemotherapy. Russian Journal of Woman and Child Health. 2021;4(1):23–30. DOI: 10.32364/2618-8430-2021-4-1-23-30. </p

    ΠžΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΡ Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… процСссов ΠΏΠΎ Ρ€Π΅ΠΊΡ€ΡƒΡ‚ΠΈΠ½Π³Ρƒ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΈ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ рСконвалСсцСнтной ΠΏΠ»Π°Π·ΠΌΡ‹ Π² ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ ΠΏΠ°Π½Π΄Π΅ΠΌΠΈΠΈ COVID-19

    No full text
    Background. The pandemic of the new coronavirus infection has challenged the medical community for quickly finding and implementing effective methods of treatment. In the absence of a vaccine or specific therapy with proven effectiveness, the usage of convalescent plasma can be the one of perspective methods. An important aspect of this technology is the efficient and safe preparation of convalescent plasma. To date, in the world literature there are practically no publications about donor recruitment and the specifics of the preparation of convalescent plasma. Purpose of the research. Presentation of the experience of organizing a workflow for recruiting donors and stockpiling of convalescent plasma with a high titer of virus-neutralizing antibodies to SARS-CoV-2. Methods. The analysis of the work of the Blood Service of the Moscow Department of Health for stockpiling of COVID-19 convalescent plasma has been executed. In total it has been stockpiled 1240 doses. The normative documentation has been developed by a working group on the basis of the current federal legislation of Russian federation and been approved by the Moscow Department of Health. The titer of neutralizing antibodies (VNA) has been determined as the basic method for assessing the immunological viability of convalescent plasma. The main characteristics of donors, the characteristics of the disease course, the results of preliminary testing for the presence of specific antibodies by ELISA and CLIA methods has been compared with VNA titers in the stockpiled convalescent plasma. Results. Due to a Moscow Health Departments order No. 325 dated 01.04.2020 (a basic local regulatory document) it has been developed a regulation for the stockpiling, examination, storage, safety and transfering of fresh frozen pathogen-reduced plasma of COVID-19 convalescent donors to medical organizations of the Moscow Health Department. For arranging an interaction with donors it has been created a call-center. For effective preliminary selection, it has been formed a donor characteristics list, which has been combined with screening of specific antibodies by ELISA and CLIA methods. Conclusions. Developed a system of recruiting donors and procurement process of convalescent plasma for treatment Π‘OVID-19, which includes the necessary regulations, algorithms for the selection and recruitment of donors, the registry of donors and recipients, algorithms, efficiency and safety of convalescent plasma.ОбоснованиС. ПандСмия Π½ΠΎΠ²ΠΎΠΉ коронавирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ поставила ΠΏΠ΅Ρ€Π΅Π΄ мСдицинским сообщСством Π·Π°Π΄Π°Ρ‡Ρƒ быстрого поиска ΠΈ внСдрСния эффСктивных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ лСчСния. Π’ условиях отсутствия Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹ ΠΈ срСдств спСцифичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ с Π΄ΠΎΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ Π² качСствС ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· пСрспСктивных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ рассматриваСтся трансфузия рСконвалСсцСнтной ΠΏΠ»Π°Π·ΠΌΡ‹ (РП). Π’Π°ΠΆΠ½Ρ‹ΠΌ аспСктом Π΄Π°Π½Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ являСтся Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ° эффСктивного ΠΈ бСзопасного ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°. На сСгодняшний дСнь ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΠΎ Ρ€Π΅ΠΊΡ€ΡƒΡ‚ΠΈΠ½Π³Ρƒ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΈ особСнностях Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ РП Π² ΠΌΠΈΡ€ΠΎΠ²ΠΎΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ практичСски ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚. ЦСль исслСдования Анализ ΠΎΠΏΡ‹Ρ‚Π° ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ€Π°Π±ΠΎΡ‡Π΅Π³ΠΎ процСсса ΠΏΠΎ ΠΏΡ€ΠΈΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΡŽ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΈ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ РП с высоким Ρ‚ΠΈΡ‚Ρ€ΠΎΠΌ Π²ΠΈΡ€ΡƒΡΠ½Π΅ΠΉΡ‚Ρ€Π°Π»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΊ SARS-CoV-2. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π‘Π»ΡƒΠΆΠ±Ρ‹ ΠΊΡ€ΠΎΠ²ΠΈ Π”Π΅ΠΏΠ°Ρ€Ρ‚Π°ΠΌΠ΅Π½Ρ‚Π° здравоохранСния Π³. ΠœΠΎΡΠΊΠ²Ρ‹ (Π”Π—Πœ) ΠΏΠΎ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ РП COVID-19. ВсСго Π·Π°Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΎ 1240 Π΄ΠΎΠ·. Нормативная докумСнтация Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ Π½Π° основании Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ Ρ„Π΅Π΄Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½ΠΎΠ΄Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΈ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° Π”Π—Πœ. Как базовая ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΎΡ†Π΅Π½ΠΊΠΈ иммунологичСской ΡΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ РП, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ Ρ‚ΠΈΡ‚Ρ€ Π²ΠΈΡ€ΡƒΡΠ½Π΅ΠΉΡ‚Ρ€Π°Π»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π» (ВНА). ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ сопоставлСниС основных характСристик Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ², особСнностСй тСчСния заболСвания, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ тСстирования Π½Π° Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ спСцифичСских Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ИЀА ΠΈ ИΠ₯ЛА с Ρ‚ΠΈΡ‚Ρ€Π°ΠΌΠΈ ВНА Π·Π°Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½ΠΎΠΉ РП. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π Π°Π±ΠΎΡ‚Π° ΠΏΠΎ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅, обслСдованию, Ρ…Ρ€Π°Π½Π΅Π½ΠΈΡŽ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡Π΅Π½ΠΈΡŽ бСзопасности ΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Π΅ Π² мСдицинскиС ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ Π”ΠœΠ— свСТСзамороТСнной ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Ρ€Π΅Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΏΠ»Π°Π·ΠΌΡ‹ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ²-рСконвалСсцСнтов COVID-19 Π±Ρ‹Π»Π° ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΎΠ²Π°Π½Π° Π½Π° основании ΠΏΡ€ΠΈΠΊΠ°Π·Π° Π”Π—Πœ ΠΎΡ‚ 01.04.2020 β„– 325 ΠΊΠ°ΠΊ Π±Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ локального Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°. Для ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΈ с ΡΠΎΡΡ‚ΠΎΡΠ²ΡˆΠΈΠΌΠΈΡΡ Π΄ΠΎΠ½ΠΎΡ€Π°ΠΌΠΈ ΠΈ привлСчСния рСконвалСсцСнтов использовались рСсурсы ΠΊΠΎΠ»Π»-Ρ†Π΅Π½Ρ‚Ρ€Π°. Для эффСктивного ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΡ‚Π±ΠΎΡ€Π° Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΠ»ΠΈΡΡŒ Π°Π½Π°Π»ΠΈΠ· характСристик Π΄ΠΎΠ½ΠΎΡ€Π° (ΠΏΠ»Π°Π·ΠΌΠ° с наибольшими значСниями Ρ‚ΠΈΡ‚Ρ€Π° ВНА ΠΎΠΆΠΈΠ΄Π°Π΅ΠΌΠ° ΠΎΡ‚ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ²-ΠΌΡƒΠΆΡ‡ΠΈΠ½, ΠΏΠ΅Ρ€Π΅Π±ΠΎΠ»Π΅Π²ΡˆΠΈΡ… с ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ явной вирусной ΠΏΠ½Π΅Π²ΠΌΠΎΠ½ΠΈΠΈ) ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ скрининга спСцифичСских Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ИЀА ΠΈ ИΠ₯ЛА. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° систСма обСспСчСния Ρ€Π΅ΠΊΡ€ΡƒΡ‚ΠΈΠ½Π³Π° Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΈ процСсса Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ РП для лСчСния Π‘OVID-19, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π°Ρ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Ρ‹, Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ ΠΎΡ‚Π±ΠΎΡ€Π° ΠΈ привлСчСния Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ², рССстр Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΈ Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚ΠΎΠ², Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ обСспСчСния эффСктивности ΠΈ бСзопасности РП
    corecore