855 research outputs found

    Quantum phase transitions in a new exactly solvable quantum spin biaxial model with multiple spin interactions

    Full text link
    The new integrable quantum spin model is proposed. The model has a biaxial magnetic anisotropy of alternating coupling between spins together with multiple spin interactions. Our model gives the possibility to exactly find thermodynamic characteristics of the considered spin chain. The ground state of the model can reveal spontaneous values of the total magnetic and antiferromagnetic moments, caused by multiple spin couplings. Also, in the ground state, depending on the strength of multiple spin couplings, our model manifests several quantum critical points, some of which are governed by the external magnetic field

    Homomorphic encryption and some black box attacks

    Full text link
    This paper is a compressed summary of some principal definitions and concepts in the approach to the black box algebra being developed by the authors. We suggest that black box algebra could be useful in cryptanalysis of homomorphic encryption schemes, and that homomorphic encryption is an area of research where cryptography and black box algebra may benefit from exchange of ideas

    Ab initio Evidence for Giant Magnetoelectric Responses Driven by Structural Softness

    Full text link
    We show that inducing structural softness in regular magnetoelectric (ME) multiferroics -- i.e., tuning the materials to make their structure strongly reactive to applied fields -- makes it possible to obtain very large ME effects. We present illustrative first-principles results for BiFeO3 thin films.Comment: 4 pages with 3 figures embedded. More information at http://www.icmab.es/dmmis/leem/jorg

    Dissipationless Spin Current between Two Coupled Ferromagnets

    Full text link
    We demonstrate the general principle which states that a dissipationless spin current flows between two coupled ferromagnets if their magnetic orders are misaligned. This principle applies regardless the two ferromagnets are metallic or insulating, and also generally applies to bulk magnetic insulators. On a phenomenological level, this principle is analogous to Josephson effect, and yields a dissipationless spin current that is independent from scattering. The microscopic mechanisms for the dissipationless spin current depend on the systems, which are elaborated in details. A uniform, static magnetic field is further proposed to be an efficient handle to create the misaligned configuration and stabilize the dissipationless spin current.Comment: 10 pages, 5 figure

    New approaches in black box group theory

    Get PDF

    Prediction for new magnetoelectric fluorides

    Get PDF
    We use symmetry considerations in order to predict new magnetoelectric fluorides. In addition to these magnetoelectric properties, we discuss among these fluorides the ones susceptible to present multiferroic properties. We emphasize that several materials present ferromagnetic properties. This ferromagnetism should enhance the interplay between magnetic and dielectric properties in these materials.Comment: 12 pages, 4 figures, To appear in Journal of Physics: Condensed Matte

    Magnetoelectric response of multiferroic BiFeO3 and related materials

    Full text link
    We present a first-principles scheme for computing the magnetoelectric response of multiferroics. We apply our method to BiFeO3 (BFO) and related compounds in which Fe is substituted by other magnetic species. We show that under certain relevant conditions -- i.e., in absence of incommensurate spin modulation, as in BFO thin films and some BFO-based solid solutions -- these materials display a large linear magnetoelectric response. Our calculations reveal the atomistic origin of the coupling and allow us to identify the most promising strategies to enhance it.Comment: 4 pages with 1 figure embedded. More information at http://www.icmab.es/dmmis/leem/jorg

    On Chromospheric Variations Modeling for Main-Sequence Stars of G and K Spectral Classes

    Full text link
    We present a method of chromospheric flux simulation for 13 late-type main-sequence stars. These Sun-like stars have well-determined cyclic flux variations similar to 11 yr solar activity cycle. Our flux prediction is based on chromospheric HK emission time series measurements from Mount Wilson Observatory and comparable solar data. We show that solar three - component modeling explains well the stellar observations. We find that the 10 - 20% of K - stars disc surfaces are occupied by bright active regions.Comment: 8 pages, 2 figure

    Spin echo in spinor dipolar Bose-Einstein condensates

    Full text link
    We theoretically propose and numerically realize spin echo in a spinor Bose--Einstein condensate (BEC). We investigate the influence on the spin echo of phase separation of the condensate. The equation of motion of the spin density exhibits two relaxation times. We use two methods to separate the relaxation times and hence demonstrate a technique to reveal magnetic dipole--dipole interactions in spinor BECs.Comment: 4 pages, 5 figure
    • …
    corecore