15 research outputs found

    Adjuvant Cancer Biotherapy by Viscum Album Extract Isorel: Overview of Evidence Based Medicine Findings

    Get PDF
    Within the integrative medicine one of the most frequently used adjuvant cancer biotherapies is based on aqueous mistletoe (Viscum album) extracts. Tumor growth inhibition, stimulation of host immune response and improvement of the quality of life are the positive effects of mistletoe therapy described in several preclinical and clinical studies. However, cumulative results of the evidence based medicine findings on such treatments are rarely given. Therefore, this paper evaluates the evidence based findings describing effects of the Viscum album extract Isorel in cancer therapy with respect to the type of therapy, stage and type of illness. This study presents cumulated data for 74 patients with different types and stages of cancer treated by Viscum album extract as adjuvant treatment to different conventional therapies, mostly combined surgery and radiotherapy. The biotherapy effectiveness was evaluated according to the outcome as 1) no major therapeutic improvement (15% of patients), 2) prevention of tumor recurrence (47% of patients) and 3) regression of cancer (38% of patients). Notably, there was no obvious health worsening during the follow up period at all. Thus, the results obtained for conventional anticancer therapies combined with adjuvant biotherapy based on Viscum album extract seem to be beneficial for the majority of cancer patients (85%) without serious side effects

    Editorial on Anticancer Antioxidants

    No full text
    The current concepts of biomedicine consider oxidative stress to be one of crucial pathophysiological processes behind major stress- and age-associated diseases, including cancer [...

    Sensitivity of Osteosarcoma Cells to Concentration-Dependent Bioactivities of Lipid Peroxidation Product 4-Hydroxynonenal Depend on Their Level of Differentiation

    No full text
    4-Hydroxynonenal (HNE) is a major aldehydic product of lipid peroxidation known to exert several biological effects. Normal and malignant cells of the same origin express different sensitivity to HNE. We used human osteosarcoma cells (HOS) in different stages of differentiation in vitro, showing differences in mitosis, DNA synthesis, and alkaline phosphatase (ALP) staining. Differentiated HOS cells showed decreased proliferation (3H-thymidine incorporation), decreased viability (thiazolyl blue tetrazolium bromide-MTT), and increased apoptosis and necrosis (nuclear morphology by staining with 4â€Č,6-diamidino-2-phenylindole-DAPI). Differentiated HOS also had less expressed c-MYC, but the same amount of c-FOS (immunocytochemistry). When exposed to HNE, differentiated HOS produced more reactive oxygen species (ROS) in comparison with undifferentiated HOS. To clarify this, we measured HNE metabolism by an HPLC method, total glutathione (GSH), oxidized GSH (ox GSH), glutathione transferase activity (GST), proteasomal activity by enzymatic methods, HNE-protein adducts by genuine ELISA and fatty acid composition by GC-MS in these cell cultures. Differentiated HOS cells had less GSH, lower HNE metabolism, increased formation of HNE-protein adducts, and lower proteasomal activity, in comparison to undifferentiated counterpart cells, while GST and oxGSH were the same. Fatty acids analyzed by GC-MS showed that there is an increase in C20:3 in differentiated HOS while the amount of C20:4 remained the same. The results showed that the cellular machinery responsible for protection against toxicity of HNE was less efficient in differentiated HOS cells. Moreover, differentiated HOS cells contained more C20:3 fatty acid, which might make them more sensitive to free radical-initiated oxidative chain reactions and more vulnerable to the effects of reactive aldehydes such as HNE. We propose that HNE might act as natural promotor of decay of malignant (osteosarcoma) cells in case of their differentiation associated with alteration of the lipid metabolism

    Short Survey on the Protein Modifications in Plasma during SARS-CoV-2 Infection

    No full text
    Although the COVID-19 pandemic has ended, it is important to understand the pathology of severe SARS-CoV-2 infection associated with respiratory failure and high mortality. The plasma proteome, including protein modification by lipid peroxidation products in COVID-19 survivors (COVID-19; n = 10) and deceased individuals (CovDeath; n = 10) was compared in samples collected upon admission to the hospital, when there was no difference in their status, with that of healthy individuals (Ctr; n = 10). The obtained results show that COVID-19 development strongly alters the expression of proteins involved in the regulation of exocytosis and platelet degranulation (top 20 altered proteins indicated by analysis of variance; p-value (False Discovery Rate) cutoff at 5%). These changes were most pronounced in the CovDeath group. In addition, the levels of 4-hydroxynonenal (4-HNE) adducts increased 2- and 3-fold, whereas malondialdehyde (MDA) adducts increased 7- and 2.5-fold, respectively, in COVID-19 and CovDeath groups. Kinases and proinflammatory proteins were particularly affected by these modifications. Protein adducts with 15-deoxy-12,14-prostaglandin J2 (15d-PGJ2) were increased 2.5-fold in COVID-19 patients, including modifications of proteins such as p53 and STAT3, whereas CovDeath showed a decrease of approximately 60% compared with Ctr. This study for the first time demonstrates the formation of lipid metabolism products—protein adducts in plasma from survived and deceased COVID-19 patients, significantly distinguishing them, which may be a predictor of the course of SARS-CoV-2 infection

    Lipid peroxidation product 4-hydroxynonenal as factor of oxidative homeostasis supporting bone regeneration with bioactive glasses

    No full text
    Bone regeneration is a process of vital importance since fractures of long bones and large joints have a highly deleterious impact on both, individuals and society. Numerous attempts have been undertaken to alleviate this severe medical and social problem by development of novel bioactive materials, among which bioactive glass is the most attractive because of its osteoconductive and osteostimulative properties. Since lipid peroxidation is an important component of systematic stress response in patients with traumatic brain injuries and bone fractures, studies have been undertaken of the molecular mechanisms of the involvement of 4-hydroxynonenal (HNE), an end product of lipid peroxidation, in cellular growth regulation. We found that HNE generated in bone cells grown in vitro on the surfaces of bioactive glasses 45S5 and 13-93. This raises an interesting possibility of combined action of HNE and ionic bioglass dissolution products in enhanced osteogenesis probably through a mitogen-activated protein kinase (MAPK) pathway. While the proposed mechanism still has to be elucidated, the finding of HNE generation on bioglass offers a new interpretation of the osteoinducting mechanisms of bioglass and suggests the possibility of tissue engineering based on manipulations of oxidative homeostasis

    Dietary polyunsaturated fatty acids and heme iron induce oxidative stress biomarkers and a cancer promoting environment in the colon of rats

    No full text
    International audienceThe end products of polyunsaturated fatty acid (PUFA) peroxidation, such as malondialdehyde (MDA), 4-hydroxynonenal (HNE), and isoprostanes (8-iso-PGF2alpha), are widely used as systemic lipid oxidation/oxidative stress biomarkers. However, some of these compounds have also a dietary origin. Thus, replacing dietary saturated fat by PUFAs would improve health but could also increase the formation of such compounds, especially in the case of a pro-oxidant/antioxidant imbalanced diet. Hence, the possible impact of dietary fatty acids and pro-oxidant compounds was studied in rats given diets allowing comparison of the effects of heme iron vs. ferric citrate and of omega-6- vs. omega-3-rich oil on the level of lipid peroxidation/oxidative stress biomarkers. Rats given a heme iron-rich diet without PUFA were used as controls. The results obtained have shown that MDA and the major urinary metabolite of HNE (the mercapturic acid of dihydroxynonane, DHN-MA) were highly dependent on the dietary factors tested, while 8-iso-PGF2alpha was modestly but significantly affected. Intestinal inflammation and tissue fatty acid composition were checked in parallel and could only explain the differences we observed to a limited extent. Thus, the differences in biomarkers were attributed to the formation of lipid oxidation compounds in food or during digestion, their intestinal absorption, and their excretion into urine. Moreover, fecal extracts from the rats fed the heme iron or fish oil diets were highly toxic for immortalized mouse colon cells. Such toxicity can eventually lead to promotion of colorectal carcinogenesis, supporting the epidemiological findings between red meat intake and colorectal cancer risk. Therefore, the analysis of these biomarkers of lipid peroxidation/oxidative stress in urine should be used with caution when dietary factors are not well controlled, while control of their possible dietary intake is needed also because of their pro-inflammatory, toxic, and even cocarcinogenic effects

    Oxidative Stress and Cancer Heterogeneity Orchestrate NRF2 Roles Relevant for Therapy Response

    No full text
    Oxidative stress and its end-products, such as 4-hydroxynonenal (HNE), initiate activation of the Nuclear Factor Erythroid 2-Related Factor 2 (NRF2)/KEAP1 signaling pathway that plays a crucial role in the maintenance of cellular redox homeostasis. However, an involvement of 4-HNE and NRF2 in processes associated with the initiation of cancer, its progression, and response to therapy includes numerous, highly complex events. They occur through interactions between cancer and stromal cells. These events are dependent on many cell-type specific features. They start with the extent of NRF2 binding to its cytoplasmic repressor, KEAP1, and extend to the permissiveness of chromatin for transcription of ARE-containing genes that are NRF2 targets. This review will explore epigenetic molecular mechanisms of NRF2 transcription through the specific molecular anatomy of its promoter. It will explain the role of NRF2 in cancer stem cells, with respect to cancer therapy resistance. Additionally, it also discusses NRF2 involvement at the cross-roads of communication between tumor associated inflammatory and stromal cells, which is also an important factor involved in the response to therapy
    corecore