3 research outputs found

    Cell shape recognition by colloidal cell imprints: Energy of the cell-imprint interaction

    Get PDF
    The results presented in this study are aimed at the theoretical estimate of the interactions between a spherical microbial cell and the colloidal cell imprints in terms of the Derjaguin, Landau, Vervey, and Overbeek (DLVO) surface forces. We adapted the Derjaguin approximation to take into account the geometry factor in the colloidal interaction between a spherical target particle and a hemispherical shell at two different orientations with respect to each other. We took into account only classical DLVO surface forces, i.e., the van der Waals and the electric double layer forces, in the interaction of a spherical target cell and a hemispherical shell as a function of their size ratio, mutual orientation, distance between their surfaces, their respective surface potentials, and the ionic strength of the aqueous solution. We found that the calculated interaction energies are several orders higher when match and recognition between the target cell and the target cell imprint is achieved. Our analysis revealed that the recognition effect of the hemispherical shell towards the target microsphere comes from the greatly increased surface contact area when a full match of their size and shape is produced. When the interaction between the surfaces of the hemishell and the target cell is attractive, the recognition greatly amplifies the attraction and this increases the likelihood of them to bind strongly. However, if the surface interaction between the cell and the imprint is repulsive, the shape and size match makes this interaction even more repulsive and thus decreases the likelihood of binding. These results show that the surface chemistry of the target cells and their colloidal imprints is very important in controlling the outcome of the interaction, while the shape recognition only amplifies the interaction. In the case of nonmonotonous surface-to-surface interaction we discovered some interesting interplay between the effects of shape match and surface chemistry which is discussed in the paper. The results from this study establish the theoretical basis of cell shape recognition by colloidal cell imprints which, combined with cell killing strategies, could lead to an alternative class of cell shape selective antimicrobials, antiviral, and potentially anticancer therapies

    Photothermal colloid antibodies for shape-selective recognition and killing of microorganisms

    Get PDF
    We have developed a class of selective antimicrobial agents based on the recognition of the shape and size of the bacterial cells. These agents are anisotropic colloid particles fabricated as negative replicas of the target cells which involve templating of the cells with shells of inert material followed by their fragmentation. The cell shape recognition by such shell fragments is due to the increased area of surface contact between the cells and their matching shell fragments which resembles antibody-antigen interaction. We produced such "colloid antibodies" with photothermal mechanism for shape-selective killing of matching cells. This was achieved by the subsequent deposition of (i) gold nanoparticles (AuNPs) and (ii) silica shell over yeast cells, which were chosen as model pathogens. We demonstrated that fragments of these composite AuNP/silica shells act as "colloid antibodies" and can bind to yeast cells of the same shape and size and deliver AuNPs directly onto their surface. We showed that after laser irradiation, the localized heating around the AuNPs kills the microbial cells of matching shape. We confirmed the cell shape-specific killing by photothermal colloid antibodies in a mixture of two bacterial cultures of different cell shape and size. This approach opens a number of avenues for building powerful selective biocides based on combinations of colloid antibodies and cell-killing strategies which can be applied in new antibacterial therapies
    corecore