1 research outputs found

    Fluorescence polarization immunoassay for rapid screening of the pesticides thiabendazole and tetraconazole in wheat

    Full text link
    [EN] Fluorescence polarization immunoassays (FPIAs) for thiabendazole and tetraconazole were first developed. Tracers for FPIAs of thiabendazole and tetraconazole were synthesized and the tracers' structures were confirmed by HPLC-MS/MS. The 4-aminomethylfluorescein-labeled tracers allowed achieving the best assay sensitivity and minimum reagent consumption in comparison with aminofluorescein-labeled and alkyldiaminefluoresceinthiocarbamyl-labeled tracers. Measurements of fluorescence polarization were performed using a portable device. The developed FPIA methods were applied for the analysis of wheat. Fast and simple sample preparation technique earlier developed by authors for pesticides was adapted for thiabendazole and tetraconazole. The limits of detection of thiabendazole and tetraconazole in wheat were 20 and 200g/kg, and the lower limits of quantification were 40 and 600g/kg, respectively. The recovery test was performed by two methodsFPIA and HPLC-MS/MS. The results obtained by FPIA correlated well with those obtained by HPLC-MS/MS (r(2)=0.9985 for thiabendazole, r(2)=0.9952 for tetraconazole). Average recoveries of thiabendazole and tetraconazole were 744% and 723% by FPIA, and average recoveries of thiabendazole and tetraconazole were 86 +/- 2% and 74 +/- 1% by HPLC-MS/MS (n=15).The work was financially supported by the Russian Science Foundation (project No. 14-16-00149).Boroduleva, AY.; Manclus Ciscar, JJ.; Montoya, Á.; Eremin, SA. (2018). Fluorescence polarization immunoassay for rapid screening of the pesticides thiabendazole and tetraconazole in wheat. Analytical and Bioanalytical Chemistry. 410(26):6923-6934. https://doi.org/10.1007/s00216-018-1296-zS6923693441026Robinson HJ, Stoerk HC, Graessle OE. Studies on the toxicologic and pharmacologic properties of thiabendazole. Toxicol Appl Pharmacol. 1965;7:53–63.Abbassy MA, Marzouk MA, Nasr HM, Mansy AS. Effect of imidacloprid and tetraconazole on various hematological and biochemical parameters in male albino rats (Rattus norvegious). J Pol Sci Pub Aff. 2014;2:7.European Commission, Regulation (EC) No 2017/1164 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for acrinathrin, metalaxyl and thiabendazole in or on certain products. Off J EU L170. 2017:3–30.Hygienic standard GN 1.2.3539-18. Hygienic standards for pesticide residues in environmental samples (list). 2018. In Russian. 〈 http://docs.cntd.ru/document/557532326 . Accessed 07.07.2018).European Commission, Regulation (EC) No 822/2009 amending Annexes II, III and IV to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for azoxystrobin, atrazine, chlormequat, cyprodinil, dithiocarbamates, fludioxonil, fluroxypyr, indoxacarb, mandipropamid, potassium tri-iodide, spirotetramat, tetraconazole, and thiram in or on certain products. Off J EU L239. 2009:5–45.GarcĂ­a-FernĂĄndez M, DĂ­az-Álvarez M, MartĂ­n-Esteban A. Molecularly imprinted magnetic nanoparticles for the micro solid-phase extraction of thiabendazole from citrus samples. J Sep Sci. 2017;40:2638–44.Yu QW, Sun H, Wang K, He HB, Feng YQ. Monitoring of carbendazim and thiabendazole in fruits and vegetables by SiO2@ NiO-based solid-phase extraction coupled to high-performance liquid chromatography-fluorescence detector. Food Anal Methods. 2017;10:2892–901.Alves AA, Rodrigues AS, Barros EBP, Uekane TM, Bizzo HR, Rezende CM. Determination of pesticides residues in Brazilian grape juices using GC-MS-SIM. Food Anal Methods. 2014;7:1834–9.Zhang H, Qian M, Wang X, Wang X, Xu H, Qi P, et al. Analysis of tebuconazole and tetraconazole enantiomers by chiral HPLC-MS/MS and application to measure enantioselective degradation in strawberries. Food Anal Methods. 2012;5:1342–8.Bordagaray A, GarcĂ­a-Arrona R, MillĂĄn E. Development and application of a screening method for triazole fungicide determination in liquid and fruit samples using solid-phase microextraction and HPLC-DAD. Anal Methods. 2013;5:2565–71.Aquino A, Navickiene S. MSPD procedure for determination of carbofuran, pyrimethanil and tetraconazole residues in banana by GC–MS. Chromatographia. 2009;70:1265–9.Dankwardt A, Pullen S, Hock B. Immunoassays: applications for the aquatic environment. In: Wells PG, Lee K, Blaise C, editors. Microscale testing in aquatic toxicology. Boca Raton: CRC Press; 2018. p. 13–29.Wells MJM, Bell KY, Traexler KA, Pellegrin M-L, Morse A. Emerging pollutants. Water Environ Res. 2011;82(10):2095–70.Abad A, ManclĂșs JJ, Moreno MJ, Montoya A. Determination of thiabendazole in fruit juices by a new monoclonal enzyme immunoassay. J AOAC Int. 2001;84:156–61.΀sialla Z, Ucles-Moreno A, Petrou P, Fernandez-Alba AR, Κakabakos SE. Development of an indirect enzyme immunoassay for the determination of thiabendazole in white and red wines. Int J Environ Anal Chem. 2015;95:1299–309.UclĂ©s A, GarcĂ­a AV, GarcĂ­a MDG, del Real AMA, FernĂĄndez-Alba AR. Benzimidazole and imidazole fungicide analysis in grape and wine samples using a competitive enzyme-linked immunosorbent assay. Anal Methods. 2015;7:9158–65.BlaĆŸkovĂĄ M, Rauch P, Fukal L. Strip-based immunoassay for rapid detection of thiabendazole. Biosens Bioelectron. 2010;25:2122–8.Estevez MC, Belenguer J, Gomez-Montes S, Miralles J, Escuela AM, Montoya A, et al. Indirect competitive immunoassay for the detection of fungicide thiabendazole in whole orange samples by surface plasmon resonance. Analyst. 2012;137:5659–65.Cairoli S, Arnoldi A, Pagani S. Enzyme-linked immunosorbent assay for the quantitation of the fungicide tetraconazole in fruits and fruit juices. J Agric Food Chem. 1996;44:3849–54.ManclĂșs JJ, Moreno MJ, Plana E, Montoya A. Development of monoclonal immunoassays for the determination of triazole fungicides in fruit juices. J Agric Food Chem. 2008;56:8793–800.Plana E, Moreno MJ, Montoya Á, ManclĂșs JJ. Development and application of recombinant antibody-based immunoassays to tetraconazole residue analysis in fruit juices. Food Chem. 2014;143:205–13.Feng J, Hu Y, Grant E, Lu X. Determination of thiabendazole in orange juice using an MISPE-SERS chemosensor. Food Chem. 2018;239:816–22.Smith DS, Eremin SA. Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Anal Bioanal Chem. 2008;391:1499–07.Eremin SA, Smith DS. Fluorescence polarization immunoassays for pesticides. Comb Chem High Throughput Screen. 2003;6:257–66.Boroduleva AY, Wu J, Yang Q, Li H, Zhang Q, Li P, et al. Development of fluorescence polarization immunoassays for parallel detection of pesticides carbaryl and triazophos in wheat grains. Anal Methods. 2017;9:6814–22.Pourfarzaneh M, White GW, Landon J, Smith DS. Cortisol directly determined in serum by fluoroimmunoassay with magnetizable solid phase. Clin Chem. 1980;26:730–3.Mi T, Liang X, Ding L, Zhang S, Eremin SA, Beier RC, et al. Development and optimization of a fluorescence polarization immunoassay for orbifloxacin in milk. Anal Methods. 2014;6:3849–57
    corecore