46 research outputs found

    Anisotropic KPZ growth in 2+1 dimensions: fluctuations and covariance structure

    Get PDF
    In [arXiv:0804.3035] we studied an interacting particle system which can be also interpreted as a stochastic growth model. This model belongs to the anisotropic KPZ class in 2+1 dimensions. In this paper we present the results that are relevant from the perspective of stochastic growth models, in particular: (a) the surface fluctuations are asymptotically Gaussian on a sqrt(ln(t)) scale and (b) the correlation structure of the surface is asymptotically given by the massless field.Comment: 13 pages, 4 figure

    Slow decorrelations in KPZ growth

    Get PDF
    For stochastic growth models in the Kardar-Parisi-Zhang (KPZ) class in 1+1 dimensions, fluctuations grow as t^{1/3} during time t and the correlation length at a fixed time scales as t^{2/3}. In this note we discuss the scale of time correlations. For a representant of the KPZ class, the polynuclear growth model, we show that the space-time is non-trivially fibred, having slow directions with decorrelation exponent equal to 1 instead of the usual 2/3. These directions are the characteristic curves of the PDE associated to the surface's slope. As a consequence, previously proven results for space-like paths will hold in the whole space-time except along the slow curves.Comment: 22 pages, 9 figures, LaTeX; Minor language revision

    From interacting particle systems to random matrices

    Full text link
    In this contribution we consider stochastic growth models in the Kardar-Parisi-Zhang universality class in 1+1 dimension. We discuss the large time distribution and processes and their dependence on the class on initial condition. This means that the scaling exponents do not uniquely determine the large time surface statistics, but one has to further divide into subclasses. Some of the fluctuation laws were first discovered in random matrix models. Moreover, the limit process for curved limit shape turned out to show up in a dynamical version of hermitian random matrices, but this analogy does not extend to the case of symmetric matrices. Therefore the connections between growth models and random matrices is only partial.Comment: 18 pages, 8 figures; Contribution to StatPhys24 special issue; minor corrections in scaling of section 2.

    Universal exit probabilities in the TASEP

    Full text link
    We study the joint exit probabilities of particles in the totally asymmetric simple exclusion process (TASEP) from space-time sets of given form. We extend previous results on the space-time correlation functions of the TASEP, which correspond to exits from the sets bounded by straight vertical or horizontal lines. In particular, our approach allows us to remove ordering of time moments used in previous studies so that only a natural space-like ordering of particle coordinates remains. We consider sequences of general staircase-like boundaries going from the northeast to southwest in the space-time plane. The exit probabilities from the given sets are derived in the form of Fredholm determinant defined on the boundaries of the sets. In the scaling limit, the staircase-like boundaries are treated as approximations of continuous differentiable curves. The exit probabilities with respect to points of these curves belonging to arbitrary space-like path are shown to converge to the universal Airy2_2 process.Comment: 46 pages, 7 figure

    Statistics of layered zigzags: a two-dimensional generalization of TASEP

    Full text link
    A novel discrete growth model in 2+1 dimensions is presented in three equivalent formulations: i) directed motion of zigzags on a cylinder, ii) interacting interlaced TASEP layers, and iii) growing heap over 2D substrate with a restricted minimal local height gradient. We demonstrate that the coarse-grained behavior of this model is described by the two-dimensional Kardar-Parisi-Zhang equation. The coefficients of different terms in this hydrodynamic equation can be derived from the steady state flow-density curve, the so called `fundamental' diagram. A conjecture concerning the analytical form of this flow-density curve is presented and is verified numerically.Comment: 5 pages, 4 figure

    Exclusion type spatially heterogeneous processes in continuum

    Full text link
    We study deterministic discrete time exclusion type spatially heterogeneous particle processes in continuum. A typical example of this sort is a traffic flow model with obstacles: traffic lights, speed bumps, spatially varying local velocities etc. Ergodic averages of particle velocities are obtained and their connections to other statistical quantities, in particular to particle and obstacles densities (the so called Fundamental Diagram) is analyzed rigorously. The main technical tool is a "dynamical" coupling construction applied in a nonstandard fashion: instead of proving the existence of the successful coupling (which even might not hold) we use its presence/absence as an important diagnostic tool.Comment: 17 pages, minor corrections, accepted for publication in JSTA

    On the partial connection between random matrices and interacting particle systems

    Full text link
    In the last decade there has been increasing interest in the fields of random matrices, interacting particle systems, stochastic growth models, and the connections between these areas. For instance, several objects appearing in the limit of large matrices arise also in the long time limit for interacting particles and growth models. Examples of these are the famous Tracy-Widom distribution functions and the Airy_2 process. The link is however sometimes fragile. For example, the connection between the eigenvalues in the Gaussian Orthogonal Ensembles (GOE) and growth on a flat substrate is restricted to one-point distribution, and the connection breaks down if we consider the joint distributions. In this paper we first discuss known relations between random matrices and the asymmetric exclusion process (and a 2+1 dimensional extension). Then, we show that the correlation functions of the eigenvalues of the matrix minors for beta=2 Dyson's Brownian motion have, when restricted to increasing times and decreasing matrix dimensions, the same correlation kernel as in the 2+1 dimensional interacting particle system under diffusion scaling limit. Finally, we analyze the analogous question for a diffusion on (complex) sample covariance matrices.Comment: 31 pages, LaTeX; Added a section concerning the Markov property on space-like path

    Finite time corrections in KPZ growth models

    Full text link
    We consider some models in the Kardar-Parisi-Zhang universality class, namely the polynuclear growth model and the totally/partially asymmetric simple exclusion process. For these models, in the limit of large time t, universality of fluctuations has been previously obtained. In this paper we consider the convergence to the limiting distributions and determine the (non-universal) first order corrections, which turn out to be a non-random shift of order t^{-1/3} (of order 1 in microscopic units). Subtracting this deterministic correction, the convergence is then of order t^{-2/3}. We also determine the strength of asymmetry in the exclusion process for which the shift is zero. Finally, we discuss to what extend the discreteness of the model has an effect on the fitting functions.Comment: 34 pages, 5 figures, LaTeX; Improved version including shift of PASEP height functio

    Fluctuations of the one-dimensional asymmetric exclusion process using random matrix techniques

    Full text link
    The studies of fluctuations of the one-dimensional Kardar-Parisi-Zhang universality class using the techniques from random matrix theory are reviewed from the point of view of the asymmetric simple exclusion process. We explain the basics of random matrix techniques, the connections to the polynuclear growth models and a method using the Green's function.Comment: 41 pages, 10 figures, minor corrections, references adde

    Airy processes and variational problems

    Full text link
    We review the Airy processes; their formulation and how they are conjectured to govern the large time, large distance spatial fluctuations of one dimensional random growth models. We also describe formulas which express the probabilities that they lie below a given curve as Fredholm determinants of certain boundary value operators, and the several applications of these formulas to variational problems involving Airy processes that arise in physical problems, as well as to their local behaviour.Comment: Minor corrections. 41 pages, 4 figures. To appear as chapter in "PASI Proceedings: Topics in percolative and disordered systems
    corecore