30 research outputs found
From interacting particle systems to random matrices
In this contribution we consider stochastic growth models in the
Kardar-Parisi-Zhang universality class in 1+1 dimension. We discuss the large
time distribution and processes and their dependence on the class on initial
condition. This means that the scaling exponents do not uniquely determine the
large time surface statistics, but one has to further divide into subclasses.
Some of the fluctuation laws were first discovered in random matrix models.
Moreover, the limit process for curved limit shape turned out to show up in a
dynamical version of hermitian random matrices, but this analogy does not
extend to the case of symmetric matrices. Therefore the connections between
growth models and random matrices is only partial.Comment: 18 pages, 8 figures; Contribution to StatPhys24 special issue; minor
corrections in scaling of section 2.
Supremum of the Airy2 process minus a parabola on a half line
Let \aip(t) be the Airy process. We show that the random variable
[\sup_{t\leq\alpha}\{aip(t)-t^2}+\min{0,\alpha}^2] has the same distribution as
the one-point marginal of the Airy process at time . These
marginals form a family of distributions crossing over from the GUE Tracy-Widom
distribution for the Gaussian Unitary Ensemble of random
matrices, to a rescaled version of the GOE Tracy-Widom distribution for the Gaussian Orthogonal Ensemble. Furthermore, we show that
for every the distribution has the same right tail decay
.Comment: To appear in Journal of Statistical Physic
Airy processes and variational problems
We review the Airy processes; their formulation and how they are conjectured
to govern the large time, large distance spatial fluctuations of one
dimensional random growth models. We also describe formulas which express the
probabilities that they lie below a given curve as Fredholm determinants of
certain boundary value operators, and the several applications of these
formulas to variational problems involving Airy processes that arise in
physical problems, as well as to their local behaviour.Comment: Minor corrections. 41 pages, 4 figures. To appear as chapter in "PASI
Proceedings: Topics in percolative and disordered systems
A multi-layer extension of the stochastic heat equation
Motivated by recent developments on solvable directed polymer models, we
define a 'multi-layer' extension of the stochastic heat equation involving
non-intersecting Brownian motions.Comment: v4: substantially extended and revised versio
Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid-crystal turbulence
We provide a comprehensive report on scale-invariant fluctuations of growing
interfaces in liquid-crystal turbulence, for which we recently found evidence
that they belong to the Kardar-Parisi-Zhang (KPZ) universality class for 1+1
dimensions [Phys. Rev. Lett. 104, 230601 (2010); Sci. Rep. 1, 34 (2011)]. Here
we investigate both circular and flat interfaces and report their statistics in
detail. First we demonstrate that their fluctuations show not only the KPZ
scaling exponents but beyond: they asymptotically share even the precise forms
of the distribution function and the spatial correlation function in common
with solvable models of the KPZ class, demonstrating also an intimate relation
to random matrix theory. We then determine other statistical properties for
which no exact theoretical predictions were made, in particular the temporal
correlation function and the persistence probabilities. Experimental results on
finite-time effects and extreme-value statistics are also presented. Throughout
the paper, emphasis is put on how the universal statistical properties depend
on the global geometry of the interfaces, i.e., whether the interfaces are
circular or flat. We thereby corroborate the powerful yet geometry-dependent
universality of the KPZ class, which governs growing interfaces driven out of
equilibrium.Comment: 31 pages, 21 figures, 1 table; references updated (v2,v3); Fig.19
updated & minor changes in text (v3); final version (v4); J. Stat. Phys.
Online First (2012
A pedestrian's view on interacting particle systems, KPZ universality, and random matrices
These notes are based on lectures delivered by the authors at a Langeoog
seminar of SFB/TR12 "Symmetries and universality in mesoscopic systems" to a
mixed audience of mathematicians and theoretical physicists. After a brief
outline of the basic physical concepts of equilibrium and nonequilibrium
states, the one-dimensional simple exclusion process is introduced as a
paradigmatic nonequilibrium interacting particle system. The stationary measure
on the ring is derived and the idea of the hydrodynamic limit is sketched. We
then introduce the phenomenological Kardar-Parisi-Zhang (KPZ) equation and
explain the associated universality conjecture for surface fluctuations in
growth models. This is followed by a detailed exposition of a seminal paper of
Johansson that relates the current fluctuations of the totally asymmetric
simple exclusion process (TASEP) to the Tracy-Widom distribution of random
matrix theory. The implications of this result are discussed within the
framework of the KPZ conjecture.Comment: 52 pages, 4 figures; to appear in J. Phys. A: Math. Theo