4 research outputs found

    A chemical threshold controls nanocrystallization and degassing behaviour in basalt magmas

    Get PDF
    An increasing number of studies are being presented demonstrating that volcanic glasses can be heterogeneous at the nanoscale. These nano-heterogeneities can develop both during viscosity measurements in the laboratory and during magma eruptions. Our multifaceted study identifies here total transition metal oxide content as a crucial compositional factor governing the tendency of basalt melts and glasses towards nanolitization: at both anhydrous and hydrous conditions, an undercooled trachybasalt melt from Mt. Etna readily develops nanocrystals whose formation also hampers viscosity measurements, while a similar but FeO- and TiO2-poorer basalt melt from Stromboli proves far more stable at similar conditions. We therefore outline a procedure to reliably derive pure liquid viscosity without the effect of nanocrystals, additionally discussing how subtle compositional differences may contribute to the different eruptive styles of Mt. Etna and Stromboli

    Fused silica windows for solar receiver applications

    Get PDF
    A comprehensive study of optical and mechanical properties of quartz glass (fused silica) with regard to application in high temperature solar receivers is presented. The dependence of rupture strength on different surface conditions as well as high temperature is analyzed, focussing particularly on damage by devitrification and sandblasting. The influence of typical types of contamination in combination with thermal cycling on the optical properties of fused silica is determined. Cleaning methods are compared regarding effectiveness on contamination-induced degradation for samples with and without antireflective coating. The FEM-aided design of different types of receiver windows and their support structure is presented. A large-scale production process has been developed for producing fused silica dome shaped windows (pressurized window) up to a diameter of 816 mm. Prototypes were successfully pressure-tested in a test bench and certified according to the European Pressure Vessel Directive

    Effect of TiO2 and 11 minor elements on the reactivity of ground‐granulated blast‐furnace slag in blended cements

    No full text
    International audienceGround granulated blast furnace slags (GGBS) are glasses (>99%) of the CaO-Al 2 O 3-SiO 2 compositional system and are widely used as supplementary cementitious materials. Differences in reactivity of GGBS were screened by modifying the content of 11 minor elements (namely Ba, Ce, Cs, Cr, Mn, P, Sn, Sr, Ti, V, Zr). SEM observations showed that most elements entered the silicate glass matrix, only Sn was reduced to its metallic form and P accumulated in minor minerals. Mortar strength tests showed that 2d-compressive strength was reduced by > 50% for a TiO 2 content of 2.5 wt.% in the slag. At 28 days the loss in compressive strength was still > 40%. Calorimetric tests on other element additions showed that network modifiers (Ba, Cs and Sr) and GGBS reactivity are positively correlated, whereas Ce, Cr, V and Zr significantly decreased reactivity. It is shown that these effects can be well estimated by the weighted field strength of the added element
    corecore