4 research outputs found

    Secondary magnetite in ancient zircon precludes analysis of a Hadean geodynamo.

    Get PDF
    Zircon crystals from the Jack Hills, Western Australia, are one of the few surviving mineralogical records of Earth's first 500 million years and have been proposed to contain a paleomagnetic record of the Hadean geodynamo. A prerequisite for the preservation of Hadean magnetization is the presence of primary magnetic inclusions within pristine igneous zircon. To date no images of the magnetic recorders within ancient zircon have been presented. Here we use high-resolution transmission electron microscopy to demonstrate that all observed inclusions are secondary features formed via two distinct mechanisms. Magnetite is produced via a pipe-diffusion mechanism whereby iron diffuses into radiation-damaged zircon along the cores of dislocations and is precipitated inside nanopores and also during low-temperature recrystallization of radiation-damaged zircon in the presence of an aqueous fluid. Although these magnetites can be recognized as secondary using transmission electron microscopy, they otherwise occur in regions that are indistinguishable from pristine igneous zircon and carry remanent magnetization that postdates the crystallization age by at least several hundred million years. Without microscopic evidence ruling out secondary magnetite, the paleomagnetic case for a Hadean-Eoarchean geodynamo cannot yet been made.NERC ERC NS

    Estimating the Net Magnetic Moment of Geological Samples From Planar Field Maps Using Multipoles

    No full text
    Abstract Recent advances in magnetic microscopy have enabled studies of geological samples whose weak and spatially nonuniform magnetizations were previously inaccessible to standard magnetometry techniques. A quantity of central importance is the net magnetic moment, which reflects the mean direction and the intensity of the magnetization states of numerous ferromagnetic crystals within a certain volume. The planar arrangement of typical magnetic microscopy measurements, which originates from measuring the field immediately above the polished surface of a sample to maximize sensitivity and spatial resolution, makes estimating net moments considerably more challenging than with spherically distributed data. In particular, spatially extended and nonuniform magnetization distributions often cannot be adequately approximated by a single magnetic dipole. To address this limitation, we developed a multipole fitting technique that can accurately estimate net moment using spherical harmonic multipole expansions computed from planar data. Given that the optimal location for the origin of such expansions is unknown beforehand and generally unconstrained, regularization of this inverse problem is critical for obtaining accurate moment estimates from noisy experimental magnetic data. We characterized the performance of the technique using synthetic sources under different conditions (noiseless data, data corrupted with simulated white noise, and data corrupted with measured instrument noise). We then validated and demonstrated the technique using superconducting quantum interference device microscopy measurements of impact melt spherules from Lonar crater, India and dusty olivine chondrules from the CO chondrite meteorite Dominion Range 08006

    Formation of Zerovalent Iron in Iron-Reducing Cultures of Methanosarcina barkeri

    No full text
    © 2020 American Chemical Society. Methanogenic archaea have been shown to reduce iron from ferric [Fe(III)] to ferrous [Fe(II)] state, but minerals that form during iron reduction by different methanogens remain to be characterized. Here, we show that zerovalent iron (ZVI) minerals, ferrite [α-Fe(0)] and austenite [γ-Fe(0)], appear in the X-ray diffraction spectra minutes after the addition of ferrihydrite to the cultures of a methanogenic archaeon, Methanosarcina barkeri (M. barkeri). M. barkeri cells and redox-active, nonenzymatic soluble organic compounds in organic-rich spent culture supernatants can promote the formation of ZVI; the latter compounds also likely stabilize ZVI. Methanogenic microbes that inhabit organic- and Fe(III)-rich anaerobic environments may similarly reduce Fe(III) to Fe(II) and ZVI, with implications for the preservation of paleomagnetic signals during sediment diagenesis and potential applications in the protection of iron metals against corrosion and in the green synthesis of ZVI.Simons Foundation (Grant 327126)NSF (Grants 14-374 and DMR-1419807
    corecore