140 research outputs found

    Bifurcation study of phase oscillator systems with attractive and repulsive interaction.

    Get PDF
    We study a model of globally coupled phase oscillators that contains two groups of oscillators with positive (synchronizing) and negative (desynchronizing) incoming connections for the first and second groups, respectively. This model was previously studied by Hong and Strogatz (the Hong-Strogatz model) in the case of a large number of oscillators. We consider a generalized Hong-Strogatz model with a constant phase shift in coupling. Our approach is based on the study of invariant manifolds and bifurcation analysis of the system. In the case of zero phase shift, various invariant manifolds are analytically described and a new dynamical mode is found. In the case of a nonzero phase shift we obtained a set of bifurcation diagrams for various systems with three or four oscillators. It is shown that in these cases system dynamics can be complex enough and include multistability and chaotic oscillations

    The correlation grid: analysis of synchronous spiking in multi-dimensional spike train data and identification of feasible connection architectures.

    Get PDF
    This paper presents a visualization technique specifically designed to support the analysis of synchronous firings in multiple, simultaneously recorded, spike trains. This technique, called the correlation grid, enables investigators to identify groups of spike trains, where each pair of spike trains has a high probability of generating spikes approximately simultaneously or within a constant time shift. Moreover, the correlation grid was developed to help solve the following reverse problem: identification of the connection architecture between spike train generating units, which may produce a spike train dataset similar to the one under analysis. To demonstrate the efficacy of this approach, results are presented from a study of three simulated, noisy, spike train datasets. The parameters of the simulated neurons were chosen to reflect the typical characteristics of cortical pyramidal neurons. The schemes of neuronal connections were not known to the analysts. Nevertheless, the correlation grid enabled the analysts to find the correct connection architecture for each of these three data sets

    Winner-take-all in a phase oscillator system with adaptation.

    Get PDF
    We consider a system of generalized phase oscillators with a central element and radial connections. In contrast to conventional phase oscillators of the Kuramoto type, the dynamic variables in our system include not only the phase of each oscillator but also the natural frequency of the central oscillator, and the connection strengths from the peripheral oscillators to the central oscillator. With appropriate parameter values the system demonstrates winner-take-all behavior in terms of the competition between peripheral oscillators for the synchronization with the central oscillator. Conditions for the winner-take-all regime are derived for stationary and non-stationary types of system dynamics. Bifurcation analysis of the transition from stationary to non-stationary winner-take-all dynamics is presented. A new bifurcation type called a Saddle Node on Invariant Torus (SNIT) bifurcation was observed and is described in detail. Computer simulations of the system allow an optimal choice of parameters for winner-take-all implementation

    Visualisation of synchronous firing in multi-dimensional spike trains.

    Get PDF
    The gravity transform algorithm is used to study the dependencies in firing of multi-dimensional spike trains. The pros and cons of this algorithm are discussed and the necessity for improved representation of output data is demonstrated. Parallel coordinates are introduced to visualise the results of the gravity transform and principal component analysis (PCA) is used to reduce the quantity of data represented whilst minimising loss of information

    Studying the role of axon fasciculation during development in a computational model of the Xenopus tadpole spinal cord

    Get PDF
    Abstract During nervous system development growing axons can interact with each other, for example by adhering together in order to produce bundles (fasciculation). How does such axon-axon interaction affect the resulting axonal trajectories, and what are the possible benefits of this process in terms of network function? In this paper we study these questions by adapting an existing computational model of the development of neurons in the Xenopus tadpole spinal cord to include interactions between axons. We demonstrate that even relatively weak attraction causes bundles to appear, while if axons weakly repulse each other their trajectories diverge such that they fill the available space. We show how fasciculation can help to ensure axons grow in the correct location for proper network formation when normal growth barriers contain gaps, and use a functional spiking model to show that fasciculation allows the network to generate reliable swimming behaviour even when overall synapse counts are artificially lowered. Although we study fasciculation in one particular organism, our approach to modelling axon growth is general and can be widely applied to study other nervous systems

    Efficient Maximum Likelihood Estimation of Kinetic Rate Constants from Macroscopic Currents

    Get PDF
    A new method is described that accurately estimates kinetic constants, conductance and number of ion channels from macroscopic currents. The method uses both the time course and the strength of correlations between different time points of macroscopic currents and utilizes the property of semiseparability of covariance matrix for computationally efficient estimation of current likelihood and its gradient. The number of calculation steps scales linearly with the number of channel states as opposed to the cubic dependence in a previously described method. Together with the likelihood gradient evaluation, which is almost independent of the number of model parameters, the new approach allows evaluation of kinetic models with very complex topologies. We demonstrate applicability of the method to analysis of synaptic currents by estimating accurately rate constants of a 7-state model used to simulate GABAergic macroscopic currents

    Reaction times in visual search can be explained by a simple model of neural synchronization

    Get PDF
    publisher: Elsevier articletitle: Reaction times in visual search can be explained by a simple model of neural synchronization journaltitle: Neural Networks articlelink: http://dx.doi.org/10.1016/j.neunet.2016.12.003 content_type: article copyright: © 2016 Elsevier Ltd. All rights reserved

    Modeling the connectome of a simple spinal cord.

    Get PDF
    In this paper we develop a computational model of the anatomy of a spinal cord. We address a long-standing ambition of neuroscience to understand the structure-function problem by modeling the complete spinal cord connectome map in the 2-day old hatchling Xenopus tadpole. Our approach to modeling neuronal connectivity is based on developmental processes of axon growth. A simple mathematical model of axon growth allows us to reconstruct a biologically realistic connectome of the tadpole spinal cord based on neurobiological data. In our model we distribute neuron cell bodies and dendrites on both sides of the body based on experimental measurements. If growing axons cross the dendrite of another neuron, they make a synaptic contact with a defined probability. The total neuronal network contains ∼1,500 neurons of six cell-types with a total of ∼120,000 connections. The anatomical model contains random components so each repetition of the connectome reconstruction procedure generates a different neuronal network, though all share consistent features such as distributions of cell bodies, dendrites, and axon lengths. Our study reveals a complex structure for the connectome with many interesting specific features including contrasting distributions of connection length distributions. The connectome also shows some similarities to connectivity graphs for other animals such as the global neuronal network of C. elegans. In addition to the interesting intrinsic properties of the connectome, we expect the ability to grow and analyze a biologically realistic spinal cord connectome will provide valuable insights into the properties of the real neuronal networks underlying simple behavior
    corecore