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Abstract 
This paper presents a visualization technique specifically designed to support the analysis of synchronous 
firings in multiple, simultaneously recorded, spike trains. This technique, called the Correlation Grid, 
enables investigators to identify groups of spike trains, where each pair of spike trains has a high probability 
of generating spikes approximately simultaneously or within a constant time shift. Moreover, the correlation 
grid was developed to help solve the following reverse problem: identification of the connection architecture 
between spike train generating units, which may produce a spike train dataset similar to the one under 
analysis. To demonstrate the efficacy of this approach, results are presented from a study of three simulated, 
noisy, spike train datasets. The parameters of the simulated neurons were chosen to reflect the typical 
characteristics of cortical pyramidal neurons. The schemes of neuronal connections were not known to the 
analysts. Nevertheless, the correlation grid enabled the analysts to find the correct connection architecture 
for each of these three data sets. 
 

1 Introduction 
Synchronisation of neural discharges is considered 
to be an important principle of information 
processing by cortical neural circuits (Nase et al. 
2003; Neuenschwander et al., 2003, Schmidt 2003). 
Analysis of synchronisation of simultaneously 
recorded spike trains is usually based on the 
calculation of a counting function, such as a cross-
correlation function or a cross-correlogram (Gerstein 
and Kirkland, 2001). Cross-correlograms are a 
common and useful means of representing the 
relationship between pairs of spike trains, recorded 
in this way.  
However, for any significantly sized neuronal 
architecture, numerous cross-correlograms would 
require in-depth analysis in order to identify 
synchronous activity in and between groups of spike 
trains. Indeed, investigation into the functional 
connectivity of neuron groups is a very important 
area of research.  
The objective is the identification of a feasible 
architecture of connections between elements that 
could account for the original spike train data and 
subsequent correlation functions. Typically in 
mathematics, the reverse problem is very difficult to 
solve and non-unique solutions may exist. 
Nevertheless, the results of our blind testing are 
promising. 
Furthermore, new problems are posed by the 
increasingly large neural assemblies that are 
currently recorded.  
In this paper, the role that information visualization 
may play in alleviating some of these problems is 

discussed. A visualization technique, called the 
Correlation Grid (Walter et al. 2003), is used to 
analyse a simultaneously recorded dataset of n spike 
trains. Subsequently, this grid is used to identify 
clusters of synchronous spike trains. Thus, it 
supports the proposal of a scheme of functional 
connectivity based on the fact that high correlation 
between spike trains corresponds to significant 
functional connection.  
In order to imitate the experimental data of multi-
spike train recordings, a biologically-inspired 
generator of spike trains with interconnections 
according to a predefined connection scheme, 
(Borisyuk 2002) is used. Each spike train is 
generated on the basis of an enhanced integrate and 
fire model and some specified connection 
architecture with particular synaptic weights. Note 
that all results in this paper are obtained in the 
regime of blind testing. Only the spike trains were 
made available for analysis. These spike trains are 
used to generate the Correlation Grid, which is 
analysed and used to identify the underlying 
connection architecture of neurons. Finally, this 
proposed architecture is assessed with respect to the 
original used to generate the data. 
Progressively, the number of correct connection 
identifications has increased during empirical 
testing, resulting in improvements to the 
methodology used. Currently, it is possible to obtain 
a completely accurate connection scheme. In this 
paper, three trials are presented, which correspond to 
a different number of spike trains and/or connection 
schemes.   
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2 Brillinger normalisation of cross-
correlogram 

The cross-correlogram for each pair of spike trains is 
calculated in order to create the correlation grid. To 
create the cross-correlogram of a ‘target’ spike train 
relative to a ‘reference’ spike train, a standard 
counting function (Gerstein 2001, MuLab) is used. 
This function counts the number of spikes in the 
reference spike train relative to the spikes in the 
target spike train. Figure 2-1(i) depicts a typical 
cross-correlogram for a pair of connected neurons 
with a time shift corresponding to the delay in spike 
propagation from one neuron to another. In contrast, 
a typically flat cross-correlogram for a pair of 
unconnected neurons is shown in Figure 2-1(ii). 

 
Figure 2-1 An example of a cross-correlogram of (i) two 
correlated spike trains and (ii) two uncorrelated spike 
trains 

In order to make statistically significant judgements 
regarding the nature of the peaks, in the cross-
correlogram, the Brillinger normalisation is applied 
to the data (Brillinger 1979) and the peaks exceeding 
the higher bound of the 95% confidence interval are 
considered to be significant peaks. Figure 2-2 shows 
a normalised cross-correlograms for the same data as 
shown in Figure 2-1 and boundaries of 95% 
confidence interval. The highest significant peak is 
referred to as the ‘main’ peak. Thus, the main peak 
can be considered to be a measure of the proximity 
of two spike trains.  

 
(i) 

 
(ii) 

Figure 2-2 An example of a Brillinger normalised cross 
correlogram with confidence interval of (i) two correlated 
spike trains and (ii) two uncorrelated spike trains. 

Subsequently, the value of this main peak is used to 
quantify the distance between pairs of spike trains in 
the clustering algorithm as well as the density of 
shading in the corresponding cell of the correlation 
grid. 

3 The correlation grid 
The correlation grid is an overview of multiple 
cross-correlograms for a number of spike trains. 
Hence, for a given dataset, of n spike trains, all pair 
wise cross-correlograms are generated and 
normalised using the Brillinger method, and the 
main peaks ),...,1,,...,1(,, njnic ji ==  are 
calculated for all pairs. Finally, the results are 
displayed as an n-by-n symmetrical grid of grey 
scale cells, representing correlations between all 
pairs of spike trains. Thus, the magnitudes of main 
peaks are encoded from white, representing a non-
significant peak, to black, representing the largest 
peak in the grid. The user has the flexibility to view 
‘all peaks’ or solely significant peaks. Significant 
peaks are those that exceed the higher bound of the 
confidence interval. In this paper, we analyse neural 
circuits with positive connection strengths only. 
When the main peak of the cross-correlogram 
exceeds the higher bound of the Brillinger interval, a 
positive functional connection exists between the 
neurons generating these spike trains. In principle, 
negative connections should also be considered as 
they will result in peaks that are lower than the low 
bound of the significance interval.  
Additionally, it is useful to reorder the rows and 
columns of correlation grid in order to highlight the 
inherent relationships between multiple spike trains. 
The method used to accomplish this reordering is the 
cluster analysis algorithm.  

3.1 The clustering algorithm 
Let us consider an n-by-n correlation grid of cells as 
a matrix of similarities between objects (spike 
trains). Thus, the pair of spike trains who cross-
correlogram has the largest main peak is considered 
to be the most similar (the most correlated) pair of 
spike trains.  
In the trials, different algorithms were used to cluster 
spike trains. These included the following methods: 
nearest neighbour (the minimum of measures 
between objects in two groups), furthest neighbour 
(the maximum of measures between objects in two 
groups), and a centroid clustering algorithm. In 
conclusion, the most efficient algorithm is the 
furthest neighbour method. Intuitively this algorithm 
creates tight clusters and all objects inside the cluster 
have limited dissimilarity. 



 

 
Figure 3-1 Cluster analysis dendrogram for trial one data, 
also shown as the correlation grid in Figure 4-3. 

Figure 3-1 shows a cluster analysis dendrogram for 
the data from trial one. This data is also depicted as 
the ‘initial’ correlation grid shown in Figure 4-3. In 
order to enhance the perception of groups within this 
correlation grid, a left-hand recursive algorithm is 
used to redefine the ordering of spike trains. 
This algorithm descends this binary tree (see the 
dendrogram, Figure 3-1) and at each node, it initially 
follows the leftmost branch. Thus, the algorithm 
recursively follows the leftmost branch until it 
reaches a leaf node. Upon finding a left node, the 
algorithm then traverses the rightmost branch of the 
current sub-tree before ascending back up the tree to 
find the next rightmost branch to be followed. 
Subsequently, this new ordering is used to re-order 
the spike trains in the correlation grid. The resultant 
correlation grid is shown in Figure 4-5. This shows a 
significant improvement to the visualization of these 
groups of synchronously spiking trains. From this 
grid, it is immediately possible to infer that all spike 
trains are arranged into two separate clusters: (1, 3, 
7, 10 and 14) and (2, 4, 6, 8, 12, 5, 9, and 11) and 
also that spike trains 13 and 15 are independent.  
Additionally, it is immediately notable that the 
second main cluster has some overlapping 
connections that require further analysis. 
 

4 Data analysis and connection 
structure identification 

In this section, the results of three trials are 
presented. Each dataset was generated using 
simulations of integrate and fire neurons with 
particular coupling between elements. The 
parameters of the model were chosen to mimic the 
general neurophysiological characteristics of cortical 
neurons. All connection strengths in these 
simulations were chosen to be positive. 
For example, in trial one, an assembly of 15 neurons 
was simulated for a period of 20000 ms. The mean 
inter-spike interval (ISI) was 75 ms, the standard 
deviation of the ISI of the dataset was 53 ms and its 
coefficient of variation was 0.7. The ISI Histogram 
for spike train number 6 is shown in Figure 4-1 (a) 

and its autocorrelation is shown in Figure 4-1. This 
figure depicts (a) the ISI histogram of spike train 6 
and (b) the autocorrelation of spike train 6 from the 
trial one dataset. 

 
(a) (b) 

Figure 4-1 This figure depicts (a) the ISI histogram of 
spike train 6 and (b) the autocorrelation of spike train 6 
from the trial one dataset. 

The raster plot of the first 3000ms of this data is also 
shown in Figure 4-2.  

 
Figure 4-2 Raster plot of trial one spike trains 
 
We call this analysis “blind trials” because the only 
spike trains have been available for analysis. 

4.1 Trial One. Creating the correlation 
grid 

Initially, the cross-correlogram for each pair of 
fifteen spike trains is calculated with a bin size of 
1ms and a time-window of 100ms (100 bins). The 
correlation grid for the first data set is shown in 
Figure 4-3. 
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Figure 4-3 The initial correlation grid for trial one data 

For step two, all peaks that do not exceed the higher 
bound of the confidence interval of the Brillinger 
normalization are ignored. Thus, Figure 4-4 solely 



 

shows the significant values of the main peaks as 
insignificant peaks are represented in white. 
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Figure 4-4 The filtered correlation grid for trial one data 

The final stage of creating the correlation grid is the 
application of the clustering algorithm. Figure 4-5 
shows the striking affect that clustering may have on 
a correlation grid. This improved ordering supports 
the identification of groups and their position within 
any hierarchies that exist. The interpretation of the 
correlation grid is discussed in the following section. 
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Figure 4-5 The filtered and reordered correlation grid for 
trial one data 

4.1.2 Interpretation of the correlation grid 
Initial inspection of the grid reveals that three main 
groups exist. Let us refer to these as the upper, 
middle and lower groups. These groups are indicated 
by dashed boxes in Figure 4-6. 

 
Figure 4-6 The final correlation grid depicting the three 
main groups in the trial one dataset 

The top and middle groups are examined in 
significant detail in sections 4.1.3 and 4.1.4.  
The lower group is very clear. As there is no 
indication of any significant relationships of either 
neuron with any other neuron in the assembly, it is 
feasible to conclude that both neurons 13 and 15 are 
completely unconnected. 

4.1.3 The upper group of trial one 
In order to interpret the upper group, the top portion 
of the correlation grid is enlarged and is shown in 
Figure 4-7. 

 
Figure 4-7 Enlargement of the upper group of the 
correlation grid of trial one data 

Note that the upper group is made up of neurons 1, 
3, 7, 10 and 14. Further, there is a stronger 
correlation (denoted by the darker grey shade) 
between neuron 1 and all of the other neurons in the 
group. Note that neurons 3, 7, 10 and 14 exhibit a 
correlation to one another. Thus, it is likely that 
neuron 1 is connected to all of the other neurons: 3, 
7, 10 and 14. Thus, it is likely that the correlation 
between neurons 3, 7, 10 and 14 is due to the fact 
that they have a common input. 
This hypothesis is confirmed by closer inspection of 
the cross-correlograms of the neuron pairs (1, 3) and 
(3, 7), shown in Figure 4-8 and Figure 4-9, 
respectively. 

upper

middle 

lower 
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Figure 4-8 The cross-correlogram of spike trains 1 and 3 
of trial one 

Figure 4-8 depicts the correlation of neurons 1 and 
3. As anticipated, there is a time delay between the 
spikes of these neurons. From the diagram, it is 
possible to deduce that there is a high probability 
that a spike will be generated by neuron 3 
approximately 25-30ms after neuron 1 spikes. Thus, 
there is an excitatory connection from neuron 1 to 
neuron 3. 
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Figure 4-9 The cross-correlogram of spike trains 3 and 7 
of trail one 

Figure 4-9 depicts the correlation of neurons 3 and 
7. As anticipated, there is direct synchronous spiking 
activity between these two neurons due to the fact 
that both are stimulated by neuron 1. 
All of these observations support the hypothesis that 
the sub-assembly of the upper group is a circuit with 
a common source. This is depicted in Figure 4-10. 

 
Figure 4-10 The neuronal assembly of the upper group of 
trial one 

4.1.4 The middle group of trial one 
In order to interpret the middle group, the middle 
portion of the correlation grid is enlarged and shown 
in Figure 4-11. 
From this Figure, three main groups are apparent. 
The 2-group of neurons 2 and 4, the 4-group made 
up of neurons 4, 6, 8 and 12 and the 6-group made 
up of 6, 8, 12, 5, 9 and 11. Note that the 2-group and 
4-group overlap, as do the 4-group and 6-group. 
This overlapping indicates that there are connections 
between these groups and the overlapping neurons in 
principle could provide these couplings.  

 
Figure 4-11 Enlargement of the middle group of the 
correlation grid of trial one data 

The 2-group is relatively straightforward. It depicts 
neuron 2’s influence on the spike trains of neuron 4. 
The 4-group has a similar structure depicted in 
Figure 4-7. Thus, it is possible to infer that neuron 4 
is a common input to neurons 6, 8 and 12.  
The 6-group requires further analysis. Thus, it is 
shown again in Figure 4-12. In this figure, the 
different values of the main peaks within the 6-
group are highlighted using solid lines. Very high 
correlation exists between neuron 6 and neurons 5, 9 
and 11. High correlation exists between these 
neurons 5, 9 and 11. Finally, there is a low 
correlation between neurons 8 and 12 with neurons 
5, 9 and 11. 
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Low  
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Figure 4-12 Enlargement of the middle group of the 
correlation grid of trial one data with further 
classification 

The higher correlations form a familiar hierarchical 
pattern. Thus, neuron 6 connects to 5, 9 and 11. 
However, this is still some ambiguity regarding the 
connections between neurons 5, 9 and 11 with 
neurons 8 and 12.  
It is probable that this low correlation is attributable 
to the fact that neuron 4 is a common input to 
neurons 8 and 12 and also to neurons 5, 9 and 11 via 
neuron 6. To verify this assertion, the cross-
correlogram of neurons 8 and 11, shown in 4-13, is 
examined. As anticipated, there is a delayed 
correlation due to the fact that neuron 4 excites both 
neurons 8 and 11; however the excitation of neuron 
11 is via neuron 6 accounting for the delayed 
correlation peak in Figure 4-13. 

Very High 

Low 

High 
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Figure 4-13 The cross-correlogram of spike trains 8 and 
11 of trial one 

4.1.5 Summary of trial one observations 
From this analysis, it is now possible to re-create the 
coupling structure of this assembly of neurons based 
on the correlation grid and details from some of the 
cross-correlograms. This is depicted in Figure 4-14. 
After completion of the analysis we have compared 
the result obtained with connection scheme used in 
simulations and have found their complete 
correspondence. 

 
Figure 4-14 The neuronal assembly for trial one 

4.2 Trial two 
For this trial, an assembly of 10 neurons were 
simulated for a period of 100000ms. The raster plot 
for a portion of this data is shown in Figure 4-15. 
Note that the architecture of connections of the 
neurons in this assembly was unknown to the 
analysts prior to the investigation. Furthermore, the 
results of the analysis yielded an entirely accurate 
neural architecture. 

 
Figure 4-15 Raster plot of trial two spike trains 
4.2.1 The correlation grid for trial two 
Initially, the correlation grid was generated for this 
data, based on calculations of cross-correlograms 
with a bin size of 1ms and a time-window of 100ms 
(100 bins). Subsequently, the grid was filtered and 
clustered according to algorithms described above 
and the resultant correlation grid is shown in Figure 
4-16.  

Initial inspection of the grid reveals that there is 
considerable interconnection within this data set. In 
particular, note the distribution of grey cells in the 
grid. This grid can be partitioned into three groups: 
the upper, middle and lower groups as depicted in 
Figure 4-16. The upper and lower groups of trial two 
are discussed in detail in sections 4.2.2 and 4.2.3 
respectively. 
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 the upper group consists of neurons 1, 4, 6, 
Further, there is a stronger correlation 
spike trains 1 and 4; 4 and 6; 6 and 5 in 
on to the remainder. Therefore, it is likely 
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that these pairs are connected. Examination of their 
respective cross-correlograms confirms this 
hypothesis. 
The correlation between spike trains 1 and 6 is 
significant but unclear. Therefore, the cross-
correlogram for this pair, shown in Figure 4-18, is 
examined. Note that in this cross-correlogram the 
main peak occurs around 15ms. Thus, there is a time 
delay in the spike propagation from neuron 1 to 
neuron 6. There is also a second (less significant) 
peak with a slightly larger time delay. 
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Figure 4-18 The cross-correlogram of spike trains 1 and 6 
of trial two 

These time delays indicate that the corresponding 
neurons are connected via some intermediate 
neuron(s). The presence of two peaks in the cross-
correlogram suggests that two different paths exist 
between the neurons 1 and 6. 
The strength of correlation between neurons 4 and 5 
also indicates significant correlation. Upon closer 
inspection, the cross-correlogram of spike trains 4 
and 5 shows a correlation peak close to zero (see 
Figure 4-19). This indicates that these neurons spike 
synchronously. Thus, suggesting that the two 
neurons are receiving common input. 
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Figure 4-19 The cross-correlogram of spike trains 4 and 5 
of trial two 

From these observations, it is possible to deduce the 
connection scheme shown in Figure 4-20. This 
architecture shows that neuron 1 is a common source 
to neurons 4 and 5 and that they both have 
connections to neuron 6.  

 
Figure 4-20 The neuronal assembly of the upper group of 
trial two 

4.2.3 The lower group of trial two 
In order to interpret the lower group, the lower 
portion of the correlation grid is enlarged and shown 
in Figure 4-21. 

 
Figure 4-21 Enlargement of the lower group of the 
correlation grid of trial two data 

From this figure, it is apparent that spike train 2 
correlates strongly with both spike trains 7 and 9.  
Likewise, spike train 9 correlates with spike train 3. 
In addition, spike train 2 correlates, less strongly, 
with spike train 3. It is possible to hypothesise from 
these observations that a connection exists between 
neuron 9 and both neurons 2 and 3. Similarly, that 
there is a connection between neurons 7 and 3. 
Inspection of the cross-correlograms for these pairs 
confirms this hypothesis. 
It is also possible to specify the direction of these 
connections, as shown in Figure 4-22. This structure 
also explains the weaker correlation between spike 
trains 2 and 3, as these neurons both receive input 
from neuron 9. 

 
Figure 4-22 The neuronal assembly of the lower group of 
trial two 

4.2.4 Interconnection of upper and lower 
groups in trial two 

As hypothesised previously, neuron 10 links both 
the upper and lower groups. By investigating the 
cross-correlograms of spike train 10 with each of the 
upper and the lower groups (not shown here due to 
space limitations), it is possible to deduce that 
neuron 10 connects to both neurons 9 and 1. 
From the grid, it is also possible to observe another 
link, between the upper and lower groups. This 
correlation is between spike trains 3 and 6 and is 
indicated by the heart symbol (♥) in Figure 4-16. 
Note that the cross-correlogram of neurons 3 and 6 
showed a single peak, slightly delayed, thus 
indicating a direct connection between neurons 3 
and 6. 

4.2.5 Summary of trial two observations 
From this analysis, the overview and details of the 
correlation grid, it is possible to deduce the 
underlying neuronal assembly of the data set, as 
depicted in Figure 4-23. The structure of this 
assembly also explains the weak correlations, shown 
in the grid, which have not yet been considered. 



 

 
Figure 4-23 The neuronal assembly of trial two 

The correlation between spike trains 10 and 4 is 
clear; neuron 10 is connected to neuron 4 via neuron 
1. Likewise, the correlation between spike trains 8 
and 9 is due to common input. The correlations 
between spike trains 4 and 8; 6 and 8; 2 and 8 is not 
immediately obvious. However, these correlations 
are attributable to the fact that all inputs are 
governed by neuron 10.  
This assembly was completely and correctly 
reassembled based on the data available from the 
cross-correlograms and the correlation grid. 

4.3 Trial three 
For this trial, an assembly of 10 neurons were 
simulated for a period of 300000ms. Note that the 
architecture of connections of the neurons in this 
assembly was unknown to the analysts prior to the 
investigation. Again, the results of the analysis 
yielded an entirely accurate neural architecture. 

4.3.1 The correlation grid for trial three 
A correlation grid was generated for this data, with a 
bin size of 1ms and a time window of 100 bins. The 
grid was subsequently filtered and clustered; the 
resultant correlation grid is shown in Figure 4-24. 

 
Figure 4-24 The final correlation grid depicting the two 
main groups of the trial three dataset 

Initial inspection of the grid reveals that two main 
groups exist. Let us refer to these as the upper and 
lower groups as indicated in Figure 4-24. These 
groups are examined in detail in sections 4.3.2 and 
4.3.3. 
In addition, there appears to be a link between the 
upper and lower groups. Note the correlations 

between spike trains 2 and 10 and spike trains 6 and 
10, indicated by the spade symbols (♠) in Figure 
4-24. 

 

 

 

Figure 4-25 The cross-correlogram of spike trains 6 and 
10 of trail three. Note that there are no truly signification 
peaks in this cross-correlogram 

Closer inspection of the cross-correlograms, for 
these pairs, shows a peak barely higher than the 
confidence interval, see Figure 4-25. For this reason, 
these correlations can be discounted. Thus, it is 
possible to conclude that two independent groups 
exist. 

4.3.2 The upper group of trial three 
In order to interpret the upper group of trial three, 
the top portion of the correlation grid is enlarged, as 
shown in Figure 4-26. 

 
Figure 4-26 Enlargement of the upper group of the 
correlation grid of trial three data 

Note that the upper group consists of neurons 1, 4, 
10 and 3, as ordered in the grid. Further, there are 
strong correlations between spike trains 1, 4 and 10. 
Also note that spike train 3 correlates, relatively 
weakly, with spike trains 1, 4 and 10. Further to 
closer inspection of their cross-correlograms, it is 
possible to deduce that neuron 1 connects to neurons 
3, 4 and 10, as shown in Figure 4-27. 

 
Figure 4-27 The neuronal assembly of the upper group of 
trial three 

In addition, it is possible to observe that the strength 
of the connection between neurons 1 and 3, see 
Figure 4-28 for the cross-correlogram, is weaker 
than that of the connections between neurons pairs 
(1, 4) and (1, 10), see Figure 4-29. 
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Figure 4-28 The cross-correlogram of spike trains 1 and 3 
of trail three 

 
Figure 4-29 The cross-correlogram of spike trains 1 and 
10 of trail three 

4.3.3 The lower group of trial three 
In order to interpret the lower group of trial three, 
the lower portion of the correlation grid is enlarged 
and is shown in Figure 4-30. 

 
Figure 4-30 Enlargement of the lower group of the 
correlation grid of trial three data 

From this figure, two main, overlapping groups are 
apparent. The top group consists of neurons 2, 6, 5 
and 8; and the bottom group which consists of 
neurons 5, 8, 7 and 9. Recall from section 4.1.4, that 
overlapping groups tend to indicate different, 
connected hierarchies. 
The interpretation of the bottom group is relatively 
straight-forward, it has a similar pattern and 
structure to the upper group of this trial. The bottom 
group depicts neuron 5, one level higher than 
neurons 7, 8 and 9.  
The top group depicts neuron 2 connecting to both 
neurons 5 and 6. In addition, a connection exists 
from neuron 2 to neuron 8. It is likely that this is 
attributable to the connection from neuron 1 to 
neuron 8 via neuron 5. By examining the details of 
the cross-correlogram (not shown due to space 
limitations), between spike trains 2 and 8, it is 
possible to verify this hypothesis. The link between 
the top and bottom groups is clearly via neuron 5. 
In addition to these relationships, the grid shows a 
second link between the two groups, from neuron 6 
to neuron 9, indicated in Figure 4-30 by the 
following symbol (♣). 

4.3.4 Summary of trial three observations 
From this analysis, the overview and details of the 
correlation grid, it is possible to deduce the 
underlying neuronal assembly of the data set, as 
depicted in Figure 4-31. 

 
Figure 4-31 The neuronal assembly of trial three 

5 Conclusions  
This correlation grid, which is based on information 
visualisation, has proven to be an effective tool in 
supporting the study of synchronous spiking in 
multi-dimensional neuronal systems. This method 
has helped us to define the unknown structure of 
connections between neurons. At this stage, only a 
small number of simulated data sets have been 
analysed. However, these initial empirical studies 
have yielded successive correct connection 
architectures.  
These empirical studies are continuing with a variety 
of datasets from larger and more diverse assemblies. 
The results from these studies will be published in 
the future. 

6 Future Work 
The Correlation Grid will be developed to support 
software functionality such as (i) greater direct user 
manipulation, (ii) the facility to “zoom” and “hide” 
data in the grid, (iii) the capability to vary the 
thresholds of “significance” which underlie the 
colour coding, (iv) encoding other information such 
as the number of peaks & peak delay in each 
individual cross correlogram and (v) multiple 
threshold colour coding will be introduced. 
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