7,981 research outputs found

    Wetting dynamics on lyophilic solid surfaces patterned by lyophobic islands

    Full text link
    A theory for wetting of structured solid surfaces is developed, based on the delta-comb periodic potential. It possesses two matching parameters: the effective line tension and the friction coefficient on the three-phase contact line at the surface. The theory is validated on the dynamics of spreading of liquid zinc droplets on morphologically patterned zinkophilic iron surface by means of square patterns of zinkophobic aluminum oxide. It is found that the effective line tension is negative and it has essential contribution to the dynamics of spreading. Thus, the theoretical analysis shows that the presence of lyophobic patterns situated on lyophilic surface makes the latter completely wettable, i.e. no equilibrium contact angle on such surface exists making the droplet spread completely in form of thin liquid layer on the patterned surface

    Regularization of the Hamiltonian constraint and the closure of the constraint algebra

    Full text link
    In the paper we discuss the process of regularization of the Hamiltonian constraint in the Ashtekar approach to quantizing gravity. We show in detail the calculation of the action of the regulated Hamiltonian constraint on Wilson loops. An important issue considered in the paper is the closure of the constraint algebra. The main result we obtain is that the Poisson bracket between the regulated Hamiltonian constraint and the Diffeomorphism constraint is equal to a sum of regulated Hamiltonian constraints with appropriately redefined regulating functions.Comment: 23 pages, epsfig.st

    Quantum causal histories

    Get PDF
    Quantum causal histories are defined to be causal sets with Hilbert spaces attached to each event and local unitary evolution operators. The reflexivity, antisymmetry, and transitivity properties of a causal set are preserved in the quantum history as conditions on the evolution operators. A quantum causal history in which transitivity holds can be treated as ``directed'' topological quantum field theory. Two examples of such histories are described.Comment: 16 pages, epsfig latex. Some clarifications, minor corrections and references added. Version to appear in Classical and Quantum Gravit

    Graphical Evolution of Spin Network States

    Full text link
    The evolution of spin network states in loop quantum gravity can be described by introducing a time variable, defined by the surfaces of constant value of an auxiliary scalar field. We regulate the Hamiltonian, generating such an evolution, and evaluate its action both on edges and on vertices of the spin network states. The analytical computations are carried out completely to yield a finite, diffeomorphism invariant result. We use techniques from the recoupling theory of colored graphs with trivalent vertices to evaluate the graphical part of the Hamiltonian action. We show that the action on edges is equivalent to a diffeomorphism transformation, while the action on vertices adds new edges and re-routes the loops through the vertices.Comment: 24 pages, 21 PostScript figures, uses epsfig.sty, Minor corrections in the final formula in the main body of the paper and in the formula for the Tetrahedral net in the Appendi

    Causality in Spin Foam Models

    Full text link
    We compute Teitelboim's causal propagator in the context of canonical loop quantum gravity. For the Lorentzian signature, we find that the resultant power series can be expressed as a sum over branched, colored two-surfaces with an intrinsic causal structure. This leads us to define a general structure which we call a ``causal spin foam''. We also demonstrate that the causal evolution models for spin networks fall in the general class of causal spin foams.Comment: 19 pages, LaTeX2e, many eps figure

    Closed-Flux Solutions to the Constraints for Plane Gravity Waves

    Full text link
    The metric for plane gravitational waves is quantized within the Hamiltonian framework, using a Dirac constraint quantization and the self-dual field variables proposed by Ashtekar. The z axis (direction of travel of the waves) is taken to be the entire real line rather than the torus (manifold coordinatized by (z,t) is RxR rather than S1S_1 x R). Solutions to the constraints proposed in a previous paper involve open-ended flux lines running along the entire z axis, rather than closed loops of flux; consequently, these solutions are annihilated by the Gauss constraint at interior points of the z axis, but not at the two boundary points. The solutions studied in the present paper are based on closed flux loops and satisfy the Gauss constraint for all z.Comment: 18 pages; LaTe

    KMS states on Quantum Grammars

    Get PDF
    We consider quantum (unitary) continuous time evolution of spins on a lattice together with quantum evolution of the lattice itself. In physics such evolution was discussed in connection with quantum gravity. It is also related to what is called quantum circuits, one of the incarnations of a quantum computer. We consider simpler models for which one can obtain exact mathematical results. We prove existence of the dynamics in both Schroedinger and Heisenberg pictures, construct KMS states on appropriate C*-algebras. We show (for high temperatures) that for each system where the lattice undergoes quantum evolution, there is a natural scaling leading to a quantum spin system on a fixed lattice, defined by a renormalized Hamiltonian.Comment: 22 page

    Production of Polarized Vector Mesons off Nuclei

    Get PDF
    Using the light-cone QCD dipole formalism we investigate manifestations of color transparency (CT) and coherence length (CL) effects in electroproduction of longitudinally (L) and transversally (T) polarized vector mesons. Motivated by forthcoming data from the HERMES experiment we predict both the A and Q^2 dependence of the L/T- ratios, for rho^0 mesons produced coherently and incoherently off nuclei. For an incoherent reaction the CT and CL effects add up and result in a monotonic A dependence of the L/T-ratio at different values of Q^2. On the contrary, for a coherent process the contraction of the CL with Q^2 causes an effect opposite to that of CT and we expect quite a nontrivial A dependence, especially at Q^2 >> m_V^2.Comment: Revtex 24 pages and 14 figure

    Intrinsic charge transport on the surface of organic semiconductors

    Full text link
    The novel technique based on air-gap transistor stamps enabled realization of the intrinsic (not dominated by static disorder) transport of the electric-field-induced charge carriers on the surface of rubrene crystals over a wide temperature range. The signatures of the intrinsic transport are the anisotropy of the carrier mobility, mu, and the growth of mu with cooling. The anisotropy of mu vanishes in the activation regime at lower temperatures, where the charge transport becomes dominated by shallow traps. The deep traps, deliberately introduced into the crystal by X-ray radiation, increase the field-effect threshold without affecting the mobility. These traps filled above the field-effect threshold do not scatter the mobile polaronic carriers.Comment: 10 pages, 4 figure

    Discovering New Physics in the Decays of Black Holes

    Get PDF
    If the scale of quantum gravity is near a TeV, the LHC will be producing one black hole (BH) about every second, thus qualifying as a BH factory. With the Hawking temperature of a few hundred GeV, these rapidly evaporating BHs may produce new, undiscovered particles with masses ~100 GeV. The probability of producing a heavy particle in the decay depends on its mass only weakly, in contrast with the exponentially suppressed direct production. Furthemore, BH decays with at least one prompt charged lepton or photon correspond to the final states with low background. Using the Higgs boson as an example, we show that it may be found at the LHC on the first day of its operation, even with incomplete detectors.Comment: 4 pages, 3 figure
    corecore