Quantum causal histories are defined to be causal sets with Hilbert spaces
attached to each event and local unitary evolution operators. The reflexivity,
antisymmetry, and transitivity properties of a causal set are preserved in the
quantum history as conditions on the evolution operators. A quantum causal
history in which transitivity holds can be treated as ``directed'' topological
quantum field theory. Two examples of such histories are described.Comment: 16 pages, epsfig latex. Some clarifications, minor corrections and
references added. Version to appear in Classical and Quantum Gravit