Abstract

Quantum causal histories are defined to be causal sets with Hilbert spaces attached to each event and local unitary evolution operators. The reflexivity, antisymmetry, and transitivity properties of a causal set are preserved in the quantum history as conditions on the evolution operators. A quantum causal history in which transitivity holds can be treated as ``directed'' topological quantum field theory. Two examples of such histories are described.Comment: 16 pages, epsfig latex. Some clarifications, minor corrections and references added. Version to appear in Classical and Quantum Gravit

    Similar works

    Available Versions

    Last time updated on 05/06/2019