15 research outputs found

    Implementation and goals of quantum optics experiments in undergraduate instructional labs

    Full text link
    As quantum information science and technology (QIST) is becoming more prevalent and occurring not only in research labs but also in industry, many educators are considering how best to incorporate learning about quantum mechanics into various levels of education. Although much of the focus has been on quantum concepts in non-lab courses, current work in QIST has a substantial experimental component. Many instructors of undergraduate lab courses want to provide their students the opportunity to work with quantum experiments. One common way this is done is through a sequence of quantum optics experiments often referred to as the ``single-photon experiments.'' These experiments demonstrate fundamental quantum phenomena with equipment common to research labs; however, they are resource intensive and cannot be afforded by all institutions. It is therefore imperative to know what unique affordances these experiments provide to students. As a starting point, we surveyed and interviewed instructors who use the single-photon experiments in undergraduate courses, asking how and why they use the experiments. We describe the most commonly used experiments in both quantum and beyond-first-year lab courses, the prevalence of actions the students perform, and the learning goals, ranging from conceptual knowledge to lab skills to student affect. Finally, we present some strategies from these data demonstrating how instructors have addressed the common challenges of preparing students to work with conceptually and technically complex experiments and balancing the practice of technical skills with the completion of the experiments.Comment: 18 pages, 4 figures, minor edit

    Seeing quantum effects in experiments

    Get PDF
    Quantum mechanics is a field often considered very mathematical, abstract, and unintuitive. One way some instructors are hoping to help familiarize their students with these complex topics is to have the students see quantum effects in experiments in undergraduate instructional labs. Here, we present results from an interview study about what it means to both instructors and students to see quantum effects in experiments. We focus on a popular set of quantum optics experiments, and find that students believe they are observing quantum effects and achieving related learning goals by working with these experiments. Although it is not possible to see the quantum phenomena directly with their eyes, students point out different aspects of the experiments that contribute to them observing quantum effects. This often includes seeing the experimental results, sometimes in conjunction with interacting with or understanding part of the experiment. There is additional variation across student achievement of the various related learning goals, ranging from many of the students being excited about these experiments and making a connection between the mathematical theory and the experiments to only some of the students seeing a connection between these experiments and quantum technologies. This work can help instructors consider the importance and framing of quantum experiments and raises questions about when and how in the curriculum quantum experiments can be best utilized and how to make related learning goals available to all students.Comment: 26 pages, 0 figure

    Ultrafast polariton-phonon dynamics of strongly coupled quantum dot-nanocavity systems

    Get PDF
    We investigate the influence of exciton-phonon coupling on the dynamics of a strongly coupled quantum dot-photonic crystal cavity system and explore the effects of this interaction on different schemes for non-classical light generation. By performing time-resolved measurements, we map out the detuning-dependent polariton lifetime and extract the spectrum of the polariton-to-phonon coupling with unprecedented precision. Photon-blockade experiments for different pulse-length and detuning conditions (supported by quantum optical simulations) reveal that achieving high-fidelity photon blockade requires an intricate understanding of the phonons' influence on the system dynamics. Finally, we achieve direct coherent control of the polariton states of a strongly coupled system and demonstrate that their efficient coupling to phonons can be exploited for novel concepts in high-fidelity single photon generation
    corecore