4 research outputs found

    An Explanation for the Observed Weak Size Evolution of Disk Galaxies

    Get PDF
    Surveys of distant galaxies with the Hubble Space Telescope and from the ground have shown that there is only mild evolution in the relationship between radial size and stellar mass for galactic disks from z~1 to the present day. Using a sample of nearby disk-dominated galaxies from the Sloan Digital Sky Survey (SDSS), and high redshift data from the GEMS (Galaxy Evolution from Morphology and SEDs) survey, we investigate whether this result is consistent with theoretical expectations within the hierarchical paradigm of structure formation. The relationship between virial radius and mass for dark matter halos in the LCDM model evolves by about a factor of two over this interval. However, N-body simulations have shown that halos of a given mass have less centrally concentrated mass profiles at high redshift. When we compute the expected disk size-stellar mass distribution, accounting for this evolution in the internal structure of dark matter halos and the adiabatic contraction of the dark matter by the self-gravity of the collapsing baryons, we find that the predicted evolution in the mean size at fixed stellar mass since z~1 is about 15-20 percent, in good agreement with the observational constraints from GEMS. At redshift z~2, the model predicts that disks at fixed stellar mass were on average only 60% as large as they are today. Similarly, we predict that the rotation velocity at a given stellar mass (essentially the zero-point of the Tully-Fisher relation) is only about 10 percent larger at z~1 (20 percent at z~2) than at the present day.Comment: 13 pages, 6 figures, accepted for publication in ApJ. Revised in response to referee's comments to improve clariry. Results are unchange

    GEMS: The Size Evolution of Disk Galaxies

    Full text link
    We combine HST imaging from the GEMS survey with photometric redshifts from COMBO-17 to explore the evolution of disk-dominated galaxies since z<1.1. The sample is comprised of all GEMS galaxies with Sersic indices n<2.5, derived from fits to the galaxy images. We account fully for selection effects through careful analysis of image simulations; we are limited by the depth of the redshift and HST data to the study of galaxies with absolute magnitudes M(V)10. We find strong evolution in the magnitude-size scaling relation for galaxies with M(V)<-20, corresponding to a brightening of 1 mag per sqarcsec in rest-frame V-band by z=1. Yet, disks at a given absolute magnitude are bluer and have lower stellar mass-to-light ratios at z=1 than at the present day. As a result, our findings indicate weak or no evolution in the relation between stellar mass and effective disk size for galaxies with log(M)>10 over the same time interval. This is strongly inconsistent with the most naive theoretical expectation, in which disk size scales in proportion to the halo virial radius, which would predict that disks are a factor of two denser at fixed mass at z=1. The lack of evolution in the stellar mass-size relation is consistent with an ``inside-out'' growth of galaxy disks on average (galaxies increasing in size as they grow more massive), although we cannot rule out more complex evolutionary scenarios.Comment: 22 pages, 16 figures, submitted to Ap

    The Evolution of Early-type Red Galaxies with the GEMS Survey: Luminosity-size and Stellar Mass-size Relations Since z=1

    Full text link
    We combine HST/ACS imaging from the GEMS survey with redshifts and rest-frame quantities from COMBO-17 to study the evolution of morphologically early-type galaxies with red colors since z=1. We use a new large sample of 728 galaxies with centrally-concentrated radial profiles (Sersic n>2.5) and rest-frame U-V colors on the red sequence. By appropriate comparison with the local relations from SDSS, we find that the luminosity-size (L-R) and stellar mass-size (M-R) relations evolve in a manner that is consistent with the passive aging of ancient stars. By itself, this result is consistent with a completely passive evolution of the red early-type galaxy population. If instead, as demonstrated by a number of recent surveys, the early-type galaxy population builds up in mass by a factor of 2 since z=1, our results imply that new additions to the early-type galaxy population follow similar L-R and M-R correlations, compared to the older subset of early-type galaxies. Adding early-type galaxies to the red sequence through disk fading appears to be consistent with the data. Through comparison with models, the role of dissipationless merging is limited to <1 major merger on average since z=1 for the most massive galaxies. Predictions from models of gas-rich mergers are not yet mature enough to allow a detailed comparison to our observations. We find tentative evidence that the amount of luminosity evolution depends on galaxy stellar mass, such that the least massive galaxies show stronger luminosity evolution compared to more massive early types. This could reflect a different origin of low-mass early-type galaxies and/or younger stellar populations; the present data is insufficient to discriminate between these possibilities. (abridged)Comment: Submitted to ApJ, 23 pages, Latex using emulateapj5.sty and onecolfloat.sty (included), 10 figures, version with full resolution figures at http://www.astro.umass.edu/~dmac/Papers/ETevol.hires.p
    corecore