14 research outputs found
Simulation of Soil Organic Carbon Effects on Long-Term Winter Wheat (Triticum aestivum) Production Under Varying Fertilizer Inputs
Acknowledgments We appreciate the financial support from EC SMARTSOIL project (Project number: 289694) for funding the collation of long-term experimental data from the project partners and Mr. Per Abrahamsen for helping with the DAISY model. The support from LANDMARK (Grant Agreement No: 635201), WaterFARMING (Grant Agreement No: 689271), and SustainFARM (Grant Agreement No: 652615) projects are acknowledged to carry out revisions and improvement of the scientific content for resubmission of the manuscriptPeer reviewedPublisher PD
Recrystallization and Ag3Sn Particle Redistribution During Thermomechanical Treatment of Bulk Sn-Ag-Cu Solder Alloys
Sn-Ag-Cu (SAC) solders are susceptible to appreciable microstructural coarsening during storage or service. This results in evolution of joint properties over time and thereby influences the long-term reliability of microelectronic packages. Accurate reliability prediction of SAC solders requires prediction of microstructural evolution during service. Microstructure evolution in two SAC solder alloys, such as, Sn-3.0Ag-0.5Cu (SAC 305) and Sn-1.0Ag-0.5 Cu (SAC 105), under different thermomechanical excursions, including isothermal aging at 150 degrees C and thermomechanical cycling (TMC) was studied. In general, between 200 and 600 cycles during TMC, recrystallization of the Sn matrix was observed, along with redistribution of Ag3Sn particles because of dissolution and reprecipitation. These latter effects have not been reported before. It was also observed that the Sn grains recrystallized near precipitate clusters in eutectic channels during extended isothermal aging. The relative orientation of Sn grains in proeutectic colonies did not change during isothermal aging