385 research outputs found

    Evidence that human and equine erythrocytes could have significant roles in the transport and delivery of amino acids to organs and tissues

    Get PDF
    Erythrocytes have a well-defined role in the gaseous exchange of oxygen and carbon dioxide in the mammalian body. The erythrocytes can contain more than half of the free amino acids present in whole blood. Based on measures showing that venous erythrocyte levels of amino acids are much less than arterial erythrocyte levels, it has previously been proposed that erythrocytes also play a role in the delivery of amino acids to tissues in the body. This role has been dismissed because it has been assumed that to act as an amino acid transport vehicle, the erythrocytes should release their entire amino acid content in the capillary beds at the target tissues with kinetic studies showing that this would take too long to achieve. This investigation set out to investigate whether the equine erythrocytes could rapidly take up and release smaller packages of amino acids when exposed to high or low external concentrations of amino acids, because it seemed very unlikely that cells would be able to release all of their amino acids without serious impacts on osmotic balance. Freshly prepared erythrocytes were placed in alternating solutions of high and low amino acid concentrations in PBS to assess the capacities of these cells to rapidly take up and release amino acids depending on the nature of the external environment. It was found that amino acids were rapidly taken up and released in small quantities in each cycle representing 15% of their total load in equine erythrocytes and 16% in human erythrocytes. The capacity for rapid uptake/release of amino acids by equine and human erythrocytes provided evidence to support the theory that mammalian erythrocytes have a significant role in transport of amino acids from the liver to tissues, muscles and organs

    Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens

    Get PDF
    Plants contain numerous components that are important sources of new bioactive molecules with antimicrobial properties. Isothiocyanates (ITCs) are plant secondary metabolites found in cruciferous vegetables that are arising as promising antimicrobial agents in food industry. The aim of this study was to assess the antibacterial activity of two isothiocyanates (ITCs), allylisothiocyanate (AITC) and 2-phenylethylisothiocyanate (PEITC) against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes. The antibacterial mode of action was also characterized by the assessment of different physiological indices: membrane integrity, intracellular potassium release, physicochemical surface properties and surface charge. The minimum inhibitory concentration (MIC) of AITC and PEITC was 100 g/mL for all bacteria. The minimum bactericidal concentration (MBC) of the ITCs was at least 10 times higher than the MIC. Both AITC and PEITC changed the membrane properties of the bacteria decreasing their surface charge and compromising the integrity of the cytoplasmatic membrane with consequent potassium leakage and propidium iodide uptake. The surface hydrophobicity was also non-specifically altered (E. coli and L. monocytogenes become less hydrophilic; P. aeruginosa and S. aureus become more hydrophilic). This study shows that AITC and PEITC have strong antimicrobial potential against the bacteria tested, through the disruption of the bacterial cell membranes. Moreover, phytochemicals are highlighted as a valuable sustainable source of new bioactive products.This work was supported by the Operational Programme for Competitiveness Factors - COMPETE and by the Portuguese Foundation for Science and Technology through Project Phytodisinfectants - PTDC/DTP-SAP/1078/2012 (COMPETE: FCOMP-01-0124-FEDER-028765), the PhD grant awarded to Ana Abreu (SFRH/BD/84393/2012), and the post-doctoral grants awarded to Anabela Borges (SFRH/BPD/98684/2013) and Lucia C. Simoes (SFRH/BPD/81982/2011). Also, this work was undertaken as part of the European Research Project SUSCLEAN (Contract no FP7-KBBE-2011-5, project number: 287514) and the COST Action FA1202. The authors are solely responsible for this work. It does not represent the opinion of the European Community, and the Community is not responsible for any use that might be made of data appearing herein

    Understory Bird Communities in Amazonian Rainforest Fragments: Species Turnover through 25 Years Post-Isolation in Recovering Landscapes

    Get PDF
    Inferences about species loss following habitat conversion are typically drawn from short-term surveys, which cannot reconstruct long-term temporal dynamics of extinction and colonization. A long-term view can be critical, however, to determine the stability of communities within fragments. Likewise, landscape dynamics must be considered, as second growth structure and overall forest cover contribute to processes in fragments. Here we examine bird communities in 11 Amazonian rainforest fragments of 1–100 ha, beginning before the fragments were isolated in the 1980s, and continuing through 2007. Using a method that accounts for imperfect detection, we estimated extinction and colonization based on standardized mist-net surveys within discreet time intervals (1–2 preisolation samples and 4–5 post-isolation samples). Between preisolation and 2007, all fragments lost species in an area-dependent fashion, with loss of as few as <10% of preisolation species from 100-ha fragments, but up to 70% in 1-ha fragments. Analysis of individual time intervals revealed that the 2007 result was not due to gradual species loss beginning at isolation; both extinction and colonization occurred in every time interval. In the last two samples, 2000 and 2007, extinction and colonization were approximately balanced. Further, 97 of 101 species netted before isolation were detected in at least one fragment in 2007. Although a small subset of species is extremely vulnerable to fragmentation, and predictably goes extinct in fragments, developing second growth in the matrix around fragments encourages recolonization in our landscapes. Species richness in these fragments now reflects local turnover, not long-term attrition of species. We expect that similar processes could be operating in other fragmented systems that show unexpectedly low extinction
    • …
    corecore