200 research outputs found
Nonextensivity of the cyclic Lattice Lotka Volterra model
We numerically show that the Lattice Lotka-Volterra model, when realized on a
square lattice support, gives rise to a {\it finite} production, per unit time,
of the nonextensive entropy . This finiteness only occurs for for the growth mode
(growing droplet), and for for the one (growing stripe). This
strong evidence of nonextensivity is consistent with the spontaneous emergence
of local domains of identical particles with fractal boundaries and competing
interactions. Such direct evidence is for the first time exhibited for a
many-body system which, at the mean field level, is conservative.Comment: Latex, 6 pages, 5 figure
Black hole thermodynamical entropy
As early as 1902, Gibbs pointed out that systems whose partition function
diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs
(BG) theory. Consistently, since the pioneering Bekenstein-Hawking results,
physically meaningful evidence (e.g., the holographic principle) has
accumulated that the BG entropy of a black hole is
proportional to its area ( being a characteristic linear length), and
not to its volume . Similarly it exists the \emph{area law}, so named
because, for a wide class of strongly quantum-entangled -dimensional
systems, is proportional to if , and to if
, instead of being proportional to (). These results
violate the extensivity of the thermodynamical entropy of a -dimensional
system. This thermodynamical inconsistency disappears if we realize that the
thermodynamical entropy of such nonstandard systems is \emph{not} to be
identified with the BG {\it additive} entropy but with appropriately
generalized {\it nonadditive} entropies. Indeed, the celebrated usefulness of
the BG entropy is founded on hypothesis such as relatively weak probabilistic
correlations (and their connections to ergodicity, which by no means can be
assumed as a general rule of nature). Here we introduce a generalized entropy
which, for the Schwarzschild black hole and the area law, can solve the
thermodynamic puzzle.Comment: 7 pages, 2 figures. Accepted for publication in EPJ
Weak phenotypic reversion of ivermectin resistance in a field resistant isolate of Haemonchus contortus by verapamil
Recent advances in anthelmintic resistant phenotype reversion by Pgp modulating drugs in ruminant nematodes indicate that this can be a useful tool to helminth control. The aim of the present study was to evaluate the efficacy of ivermectin (IVM) in combination with verapamil (VRP), in oil or water-based vehicle, against an IVM-resistant field isolate of Haemonchus contortus through a larval migration assay and experimental infection trial. In the in vitro assay was observed a phenotypic reversion of H. contortus resistance to ivermectin at a high concentration of VRP, increasing IVM efficacy from 53.1% to 94.3. In the in vivo trial, IVM + VRP demonstrated 36.02% efficacy compared to the 7.75% of IVM alone. The vehicle formulation showed no influence in efficacy. These are the first results demonstrating the effect of VRP as a partial IVM-resistance phenotype reverser in a field isolate of IVM-resistant H. contortus experimentally inoculated in sheep
- …