17 research outputs found
Cross-sectional analysis of students and school workers reveals a high number of asymptomatic SARS-CoV-2 infections during school reopening in Brazilian cities
Brazil experienced one of the most prolonged periods of school closures, and reopening could have exposed students to high rates of SARS-CoV-2 infection. However, the infection status of students and school workers at the time of the reopening of schools located in Brazilian cities is unknown. Here we evaluated viral carriage by RT-PCR and seroprevalence of anti-SARS-CoV-2 antibodies (IgM and IgG) by immunochromatography in 2259 individuals (1139 students and 1120 school workers) from 28 schools in 28 Brazilian cities. We collected the samples within 30 days after public schools reopened and before the start of vaccination campaigns. Most students (n = 421) and school workers (n = 446) had active (qRT-PCR + IgMâ IgGâ or qRT-PCR + IgM + IgGâ/+) SARS-CoV-2 infection. Regression analysis indicated a strong association between the infection status of students and school workers. Furthermore, while 45% (n = 515) of the students and 37% (n = 415) of the school workers were neither antigen nor antibody positive in laboratory tests, 16% of the participants (169 students and 193 school workers) were oligosymptomatic, including those reinfected. These individuals presented mild symptoms such as headache, sore throat, and cough. Notably, most of the individuals were asymptomatic (83.9%). These results indicate that many SARS-CoV-2 infections in Brazilian cities during school reopening were asymptomatic. Thus, our study highlights the need to promote a coordinated public health effort to guarantee a safe educational environment while avoiding exacerbating pre-existent social inequalities in Brazil, reducing social, mental, and economic losses for students, school workers, and their families
Influence of restoration height and masticatory load orientation on ceramic endocrowns
Aim: Endocrown restorations are an alternative to restore endodontically treated teeth. Due to the fact that in the literature it is recommended a remnant of 1.5 mm, different heights of endocrown were elaborated and analyzed, obtaining possible faults and their location. This study aimed to evaluate the mechanism of stress distribution in the tooth/restoration set, varying two factors: "restoration height"-three levels, and load application-two levels (oblique or axial), totaling six groups. Materials and methods: For finite element analysis (FEA), a maxillary premolar was modeled with an endodontic treatment. Then, this template was triplicated and each copy received an endocrown restoration of different heights: G6 (4.5 mm), G7 (5.5 mm), and G8 (6.5 mm). The models were exported in STEP format to analysis software (ANSYS 17.2, ANSYS Inc.). During preprocessing, the solids were considered isotropic, linearly elastic, and homogeneous. Initially, a load (300 N) was axially applied in the central fossa region. For a second evaluation, an oblique load (300 N) was applied on the grinding slope of functional cusp. System fixation occurred at the base of polyurethane cylinder. Results were evaluated through maximum principal stress (MPS). Results: For axial load, lower stress values were generated in all groups. For oblique load, G8 showed a higher stress concentration in the cement layer and root dentin. Conclusion: When an endocrown restoration is performed, there is a tendency of failure in the cement line and in the root directly proportional to its size. However, regardless of the size of the element to be reconstituted, the axial direction of the masticatory loads tends to decrease stress concentration. Clinical significance: When performing an endocrown restoration, care must be taken with its high regardless the tooth remnant high, altering even the anatomical angulations of the occlusal face, when necessary, to avoid stress concentration in thick areas
In vitro evaluation of multi-walled carbon nanotube reinforced nanofibers composites for dental application
The goal of this study was to evaluate the mechanical properties of an experimental composite resin filled with nylon-6 nanofibers (N6), nylon-6 nanofibers with multi-walled carbon nanotubes (N6-MWCN) or with pre-polymerized resin at different concentrations. The fillers/particles were obtained from nanofibers produced by electrospinning technique or from pre-polymerized composite resin. The fillers were distributed in the composite resin in four different mass fractions (2.5, 5.0, 10.0, and 20.0%), totaling 12 groups. The volumetric polymerization shrinkage (VPS), composite film thickness (CRFT), flexural strength (FS) and elastic (E) modulus of the composite resins were calculated. The data were evaluated using two-way ANOVA and Tukey test (p <.05). The interaction concentration*filler material was statistically significant for the VPS (p =.0008) and for FS (p =.0001). The smallest VPS was observed in 20% concentration without a difference to 10% for N6-MWCN particles. For FS, N6-MWCN in 2.5 and 5.0% presented the highest values (116.4 ± 9.32; 118.5 ± 7.72). Both factors (p =.0001) were significant for CRFT. Higher concentration (20%) showed a higher film thickness. E modulus was similar for all conditions, with p =.0590 for filler material and p =.3987 for concentration. The most indicated composite reinforcement in order to achieve suitable flexural strength with decreased polymerization shrinkage is the use of pre-polymerized composite-based material at a concentration of 20%. N6-MWCNT particles in 2.5 or 5% concentrations should be incorporated to produce a composite resin presenting adequate strength associated with reduced film thickness
Influence of resin cement rigidity on the stress distribution of resin-bonded fixed partial dentures
The mechanical properties of the adhesive cement used in resin-bonded fixed partial dentures (RBFPD) can modify the clinical performance of the rehabilitation. The goal of this study was to evaluate the influence of the elastic modulus of different cements on the stress distribution in RBFPD using finite element analysis. For that an anterior 3-unit prosthesis was modeled based in a stereolithography file. The model was meshed with tetrahedral elements and materials considered isotropic, linearly elastic and homogeneous. The force applied to the palatal area of the lateral incisor (pontic) at 45° was 100 N. The cements used presented 7 different elastic modulus (E): 2, 6, 10, 14, 18, 22 or 26 GPa. The total deformation, von-Mises stress and maximum principal stress criteria were used to calculate the results. The lower tensile stress occurred in the cement layer with E = 2 GPa [25.6 (canine) and 16.32 MPa (incisor)]. For the prosthesis, the model with the lower tensile stress [287 (canine) and 248 MPa (incisor)] occurred when the cement presented E = 26 GPa. In this way, the stress concentration may have its magnitude modified depending on the stiffness of the cement. Since more flexible cements concentrate less tensile stress in its structure, but allow an increased displacement of the prosthesis, which is friable and rigid and ends up concentrating more tensile stress at its connector. In that way the clinician should avoid the use of adhesive cement with lower elastic modulus due to it increases the stress concentration in the ceramic
Mechanical behavior of Class i cavities restored by different material combinations under loading and polymerization shrinkage stress. A 3D-FEA study
Purpose: To examine the influence of different bulk and block composite and flowable and glass-ionomer material combinations in a multi-layer technique and in a unique technique, in deep Class I dental restorations. Methods: 3D CAD of the sound tooth were built-up from a CT scan dataset using reverse engineering techniques. Four restored tooth models with Class I cavity were virtually created from a CAD model of a sound tooth. 3D-finite element (FE) models were created and analyzed starting from CAD models. Model A with flowable resin composite restoring the lower layer and bulk-fill resin composite restoring the upper layer, model B with glass-ionomer cement (GIC) restoring the lower layer and bulk-fill resin composite restoring the upper layer, model C with block composite as the only restoring material and model D with bulk-fill resin composite as the only restoring material. Polymerization shrinkage was simulated with the thermal expansion approach. Physiologic masticatory loads were applied in combination with shrinkage effect. Nodal displacements on the lower surfaces of FE models were constrained in all directions. Static linear analyses were carried out. The maximum normal stress criterion was used to assess the influence of each factor. Results: Considering direct restoring techniques, models A, B and D exhibited a high stress gradient at the tooth/restorative material interface. Models A and D showed a similar stress trend along the cavity wall where a similar stress trend was recorded in the dentin and enamel. Model B showed a similar stress trend along enamel/restoration interface but a very low stress gradient along the dentin/restoration interface. Model C with a restoring block composite material showed a better response, with the lowest stress gradient at the dentin, filling block composite and enamel sides
Short communication: Influence of retainer configuration and loading direction on the stress distribution of lithium disilicate resin-bonded fixed dental prostheses: 3D finite element analysis
The present study elucidates the mechanical performance of different designs of resin-bonded fixed dental prostheses made of lithium disilicate simulating masticatory loads of anterior or canine guidance. A three-dimensional model of maxilla was constructed containing central incisor and canine teeth, with edentulous space of the lateral incisor. Three designs of prosthesis were created: retained in central incisor (1-I), retained in canine (1-C) and fixed in both teeth (2-IC). The computational analysis was performed for load in canine and central incisor separately (100N, 45°). The tensile and shear stresses were calculated for the resin-bonded fixed dental prosthesis, bonding surface of each retainer and cement layer using 3D finite element analysis. The 20 highest stress values were analyzed using two-way ANOVA and post-hoc Tukey test, all with α = 5%. The computational analysis showed that 2-retainer resin-bonded fixed dental prosthesis presented the worst prognosis regardless of the mandibular movement. ANOVA showed that Mandibular movement*Retainer interaction influenced on the tensile and shear stresses values (p < 0.01). Higher stresses were observed in the connector region for all groups (13-82.2 MPa; 11-70.2 MPa). In order to reduce the stress concentration in the resin-bonded fixed dental prosthesis and the retainer made of lithium disilicate, the occlusion may serve as the selection criteria of the unitary abutment for better sustainability