178 research outputs found

    Left ventricular apical thrombus after systemic thrombolysis with recombinant tissue plasminogen activator in a patient with acute ischemic stroke

    Get PDF
    BACKGROUND: Thrombolysis with recombinant tissue plasminogen activator (rtPA) is an established treatment in acute stroke. To prevent rethrombosis after rtPA therapy, secondary anticoagulation with heparin is commonly performed. However, the recommended time-point and extent of heparin treatment vary and are not well investigated. CASE PRESENTATION: We report a 61-year-old man who developed an acute global aphasia and right-sided hemiparesis. Cranial CT was normal and systemic thrombolytic therapy with tPA was started 120 minutes after symptom onset. Low-dose subcutaneous heparin treatment was initiated 24 hours later. Transthoracic echocardiography (TTE) 12 hours after admission showed slightly reduced left ventricular ejection fraction (LVEF) but was otherwise normal. 48 hours later the patient suddenly deteriorated with clinical signs of dyspnea and tachycardia. TTE revelead a large left ventricular apical thrombus as well as a reduction of LVEF to 20 %. Serial further TTE investigations demonstrated a complete resolution of the thrombus and normalisation of LVEF within two days. CONCLUSION: Our case demonstrates an intracardiac thrombus formation following rtPA treatment of acute stroke, probably caused by secondary hypercoagulability. Rethrombosis or new thrombus formation might be an underestimated complication of rtPA therapy and potentially explain cases of secondary stroke progression

    Early right ventricular systolic dysfunction in patients with systemic sclerosis without pulmonary hypertension: a Doppler Tissue and Speckle Tracking echocardiography study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Isovolumetric acceleration (IVA) is a novel tissue Doppler parameter for the assessment of systolic function. The aim of this study was to evaluate IVA as an early parameter for the detection of right ventricular (RV) systolic dysfunction in patients with systemic sclerosis (SSc) without pulmonary hypertension.</p> <p>Methods</p> <p>22 patients and 22 gender- and age-matched healthy subjects underwent standard echocardiography with tissue Doppler imaging (TDI) and speckle tracking strain to assess RV function.</p> <p>Results</p> <p>Tricuspid annular plane systolic excursion (TAPSE) (23.2 ± 4.1 mm vs. 26.5 ± 2.9 mm, p < 0.006), peak myocardial systolic velocity (Sm) (11.6 ± 2.3 cm/s vs. 13.9 ± 2.7 cm/s, p = 0.005), isovolumetric contraction velocity (IVV) (10.3 ± 3 cm/s vs. 14.8 ± 3 cm/s, p < 0.001) and IVA (2.3 ± 0.4 m/s<sup>2 </sup>vs. 4.1 ± 0.8 m/s<sup>2</sup>, p < 0.001) were significant lower in the patient group. IVA was the best parameter to predict early systolic dysfunction with an area under the curve of 0.988.</p> <p>Conclusion</p> <p>IVA is a useful tool with high-predictive power to detect early right ventricular systolic impairment in patients with SSc and without pulmonary hypertension.</p

    Implementation of seven echocardiographic parameters of myocardial asynchrony to improve the long-term response rate of cardiac resynchronization therapy (CRT)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac resynchronization Therapy (CRT) is an effective therapy for chronic heart failure with beneficial hemodynamic effects leading to a reduction of morbidity and mortality. The responder rates, however, are low. There are various and contentious echocardiographic parameters of myocardial asynchrony. Patient selection by echocardiographic assessment of asynchrony is thought to improve responder rates.</p> <p>Methods</p> <p>In this small single-center pilot-study, seven established parameters of myocardial asynchrony were used to select patients for CRT: (1) interventricular electromechanical delay (IMD, cut-off ≥ 40 ms), (2) Septal-to-posterior wall motion delay (SPWMD, ≥ 130 ms), (3) maximal difference in time-to-peak velocities between any two of twelve LV segments (Ts-12 ≥ 104 ms), (4) standard deviation of time to peak myocardial velocities (Ts-12-SD, ≥ 34.4 ms), (5) difference between the septal and basal time-to-peak velocity (TDId, ≥ 60 ms), (6) left ventricular electromechanical delay (LVEMD, > 140 ms) and (7) delayed longitudinal contraction (DLC, > 2 segments).</p> <p>16 chronic heart failure patients (NYHA III–IV, LVEF < 0.35, QRS ≥ 120 ms) at least two out of seven parameters of myocardial asynchrony received cardiac resynchronization therapy (CRT-ICD). Follow-up echo examination was after 6 months. The control group was a historic group of CRT patients (n = 38) who had not been screened for echocardiographic signs of myocardial asynchrony prior to device implantation.</p> <p>Results</p> <p>Based on reverse remodeling (relative reduction of LVESV > 15%, relative increase of LVEF > 25%), the responder rate to CRT was 81.2% in patients selected for CRT according to our protocol as compared to 47.4% in the control group (p = 0.04). At baseline, there were on average 4.1 ± 1.6 positive parameters of asynchrony (follow-up: 3.7 [± 1.6] parameters positive, p = 0.52). Only the LVEMD decreased significantly after CRT (p = 0.027). The remaining parameters showed a non-significant trend towards reduction of myocardial asynchrony.</p> <p>Conclusion</p> <p>The implementation of different markers of asynchrony in the selection process for CRT improves the hemodynamic response rate to CRT.</p

    Noninvasive monitoring of cardiac function in a chronic ischemic heart failure model in the rat: Assessment with tissue Doppler and non-Doppler 2D strain echocardiography

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>Feasibility of noninvasive monitoring of cardiac function after surgically induced ischemic cardiomyopathy with tissue Doppler and non-Doppler 2D strain echocardiography in rats.</p> <p>Background</p> <p>The optimal method for quantitative assessment of global and regional ventricular function in rats with chronic heart failure for research purposes remains unclear.</p> <p>Methods</p> <p>20 rats underwent suture ligation of the left anterior descending coronary artery via a left thoracotomy to induce ischemic cardiomyopathy. Echocardiographic examination with estimation of left ventricular wall thickness, diameters, fractional shortening, ejection fraction, wall velocities as well as radial strain were performed before and 4 weeks after surgery.</p> <p>Results</p> <p>Mean LVEF decreased from 70 ± 6% to 40 ± 8% (p < 0.0001) one month after the operation. LVEDD increased from 7 ± 1 mm to 9 ± 1 mm (p < 0.0001), systolic anterior velocity decreased from 0.79 ± 0.25 cm/s to 0.18 ± 0.19 cm/s (p < 0.0001). Radial 2D strain was significantly reduced after myocardial infarction of the septal (18.2 ± 6.6% vs 7.0 ± 5.9%, p < 0.001), anteroseptal (17.3 ± 5.2% vs 4.6 ± 3.0%, p < 0.0001), anterior (18.9 ± 5.9% vs 5.6 ± 2.5%, p < 0.0001), lateral (21.4 ± 4.9% vs 8.1 ± 3.5%, p < 0.0001) as well as posterior myocardial segments (19.3 ± 5.2% vs 15.4 ± 5.5%, p < 0.01). Inferior segments (19.2 ± 7.9% vs 17.8 ± 7.9%, ns) did not change at all.</p> <p>Conclusion</p> <p>It is feasible to assess dimensions, global function, and regional contractility with echocardiography in rats suffering from chronic heart failure after myocardial infarction. Particularly regional function can be exactly evaluated if tissue Doppler and 2D strain is used.</p

    Cardiac and renal function in a large cohort of amateur marathon runners

    Get PDF
    Background Participation of amateur runners in endurance races continues to increase. Previous studies of marathon runners have raised concerns about exercise-induced myocardial and renal dysfunction and damage. In our pooled analysis, we aimed to characterize changes of cardiac and renal function after marathon running in a large cohort of mostly elderly amateur marathon runners. Methods A total of 167 participants of the BERLIN-MARATHON (female n = 89, male n = 78; age = 50.3 ± 11.4 years) were included and cardiac and renal function was analyzed prior to, immediately after and 2 weeks following the race by echocardiography and blood tests (including cardiac troponin T, NT- proBNP and cystatin C). Results Among the runners, 58% exhibited a significant increase in cardiac biomarkers after completion of the marathon. Overall, the changes in echocardiographic parameters for systolic or diastolic left and right ventricular function did not indicate relevant myocardial dysfunction. Notably, 30% of all participants showed >25% decrease in cystatin C-estimated glomerular filtration rate (GFR) from baseline directly after the marathon; in 8%, we observed a decline of more than 50%. All cardiac and renal parameters returned to baseline ranges within 2 weeks after the marathon. Conclusions The increase in cardiac biomarkers after completing a marathon was not accompanied by relevant cardiac dysfunction as assessed by echocardiography. After the race, a high proportion of runners experienced a decrease in cystatin C-estimated GFR, which is suggestive of transient, exercise-related alteration of renal function. However, we did not observe persistent detrimental effects on renal function

    Interventricular septum hematoma during cineventriculography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intraseptal hematoma and subsequent myocardial infarction due to accidental contrast agent deposition complicating diagnostic cineventriculography is a previously undescribed complication of angiography.</p> <p>Case presentation</p> <p>A 61 year old man was admitted at intensive care unit because of unstable angina pectoris 1 hour after coronary angiography. Transthoracic contrast echocardiography showed a non-perfused area in the middle of interventricular septum with an increase of thickening up to 26 mm. Review of cineventriculography revealed contrast enhancement in the interventricular septum after contrast medium injection and a dislocation of the pigtail catheter tip. Follow up by echocardiography and MRI showed, that intramural hematoma has resolved after 6 weeks. After 8 weeks successful stent implantation in LAD was performed and after 6 month the patient had a normal LV-function without ischemic signs or septal thickening demonstrated by stressechocardiography.</p> <p>Conclusion</p> <p>A safe and mobile position of the pigtail catheter during ventriculography in the middle of the LV cavity should be ensured to avoid this potentially life-threatening complication. For assessment and absolute measurement of intramural hematoma contrast-enhanced echocardiography is more feasible than MRI and makes interchangeable results.</p

    Successful reduction of intraventricular asynchrony is associated with superior response to cardiac resynchronization therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac resynchronization therapy (CRT) is generally associated with a low to moderate increase of the left ventricular ejection fraction (LVEF). In some patients, however, LVEF improves remarkably and reaches near-normal values. The aim of the present study was to further characterize these so called 'super-responders' with a special focus on the extent of intra- and interventricular asynchrony before and after device implantation compared to average responders.</p> <p>Methods</p> <p>37 consecutive patients who underwent CRT device implantation according to current guidelines were included in the study. Patients were examined by echocardiography before, one day after and six months after device implantation. Pre-defined criterion for superior response to CRT was an LVEF increase > 15% after six months.</p> <p>Results</p> <p>At follow-up, eight patients (21.6%) were identified as super-responders. There were no significant differences regarding age, gender, prevalence of ischemic heart disease and LVEF between average and super-responders at baseline. After six months, LVEF had significantly increased from 26.7% ± 5.7% to 33.1% ± 7.9% (<it>p </it>< 0.001) in average and from 24.0% ± 6.7% to 50.3% ± 7.4% (<it>p </it>< 0.001) in super-responders. Both groups showed a significant reduction of QRS duration as well as LV end-diastolic and -systolic volumes under CRT. At baseline, the interventricular mechanical delay (IVMD) was 53.7 ± 20.9 ms in average and 56.9 ± 22.4 ms in super-responders - representing a similar extent of interventricular asynchrony in both groups (<it>p </it>= 0.713). CRT significantly reduced the IVMD to 20.3 ± 15.7 (<it>p </it>< 0.001) in average and to 19.8 ± 15.9 ms (<it>p </it>= 0.013) in super-responders with no difference between both groups (<it>p </it>= 0.858). As a marker for intraventricular asynchrony, we assessed the longest intraventricular delay between six basal LV segments. At baseline, there was no difference between average (86.2 ± 30.5 ms) and super-responders (78.8 ± 23.6 ms, <it>p </it>= 0.528). CRT significantly reduced the longest intraventricular delay in both groups - with a significant difference between average (66.2 ± 36.2 ms) and super-responders (32.5 ± 18.3 ms, <it>p </it>= 0.022). Multivariate logistic regression analysis identified the longest intraventricular delay one day after device implantation as an independent predictor of superior response to CRT (<it>p </it>= 0.038).</p> <p>Conclusions</p> <p>A significant reduction of the longest intraventricular delay correlates with superior response to CRT.</p

    Noninvasive monitoring of myocardial function after surgical and cytostatic therapy in a peritoneal metastasis rat model: assessment with tissue Doppler and non-Doppler 2D strain echocardiography

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>We sought to evaluate the impact of different antineoplastic treatment methods on systolic and diastolic myocardial function, and the feasibility estimation of regional deformation parameters with non-Doppler 2D echocardiography in rats.</p> <p>Background</p> <p>The optimal method for quantitative assessment of global and regional ventricular function in rats and the impact of complex oncological multimodal therapy on left- and right-ventricular function in rats remains unclear.</p> <p>Methods</p> <p>90 rats after subperitoneal implantation of syngenetic colonic carcinoma cells underwent different onclogical treatment methods and were diveded into one control group and five treatment groups (with 15 rats in each group): group 1 = control group (without operation and without medication), group 2 = operation group without additional therapy, group 3 = combination of operation and photodynamic therapy, group 4 = operation in combination with hyperthermic intraoperative peritoneal chemotherapy with mitomycine, and group 5 = operation in combination with hyperthermic intraoperative peritoneal chemotherapy with gemcitabine, group 6 = operation in combination with taurolidin i.p. instillation. Echocardiographic examination with estimation of wall thickness, diameters, left ventricular fractional shortening, ejection fraction, early and late diastolic transmitral and myocardial velocities, radial and circumferential strain were performed 3–4 days after therapy.</p> <p>Results</p> <p>There was an increase of LVEDD and LVESD in all groups after the follow-up period (P = 0.0037). Other LV dimensions, FS and EF as well as diastolic mitral filling parameters measured by echocardiography were not significantly affected by the different treatments. Values for right ventricular dimensions and function remained unchanged, whereas circumferential 2D strain of the inferior wall was slightly, but significantly reduced under the treatment (-18.1 ± 2.5 before and -16.2 ± 2.9 % after treatment; P = 0.001) without differences between the single treatment groups.</p> <p>Conclusion</p> <p>It is feasible to assess dimensions, global function, and regional contractility with echocardiography in rats under different oncological therapy. The deformation was decreased under overall treatment without influence by one specific therapy. Therefore, deformation assessment with non-Doppler 2D strain echocardiography is more sensitive than conventional echocardiography for assessing myocardial dysfunction in rats under oncological treatment.</p

    Echocardiographic diagnosis, management and monitoring of pulmonary embolism with right heart thrombus in a patient with myotonic dystrophy: a case report

    Get PDF
    Acute pulmonary embolism (PE) is a common disease which frequently results in life-threatening right ventricular (RV) failure. High-risk PE, presenting with hypotension, shock, RV dysfunction or right heart thrombus is associated with a high mortality, particularly during the first few hours. Accordingly, it is important to commence effective therapy as soon as possible. In the case described in this report, a 49-year-old woman with myotonic dystrophy type 1 presented with acute respiratory failure and hypotension. Transthoracic echocardiography showed signs of right heart failure and a mobile right heart mass highly suspicious of a thrombus. Based on echocardiographic findings, acute thrombolysis was performed resulting in hemodynamic stabilization of the patient and complete resolution of the right heart thrombus. This case underscores the important role of transthoracic echocardiography for the diagnosis, management and monitoring of PE and underlines the efficacy and safety of thrombolysis in the treatment of PE associated with right heart thrombus

    Influence of the atrio-ventricular delay optimization on the intra left ventricular delay in cardiac resynchronization therapy

    Get PDF
    BACKGROUND: Cardiac Resynchronization Therapy (CRT) leads to a reduction of left-ventricular dyssynchrony and an acute and sustained hemodynamic improvement in patients with chronic heart failure. Furthermore, an optimized AV-delay leads to an improved myocardial performance in pacemaker patients. The focus of this study is to investigate the acute effect of an optimized AV-delay on parameters of dyssynchrony in CRT patients. METHOD: 11 chronic heart failure patients with CRT who were on stable medication were included in this study. The optimal AV-delay was defined according to the method of Ismer (mitral inflow and trans-oesophageal lead). Dyssynchrony was assessed echocardiographically at three different settings: AVD(OPT); AVD(OPT)-50 ms and AVD(OPT)+50 ms. Echocardiographic assessment included 2D- and M-mode echo for the assessment of volumes and hemodynamic parameters (CI, SV) and LVEF and tissue Doppler echo (strain, strain rate, Tissue Synchronisation Imaging (TSI) and myocardial velocities in the basal segments) RESULTS: The AVD(OPT )in the VDD mode (atrially triggered) was 105.5 ± 38.1 ms and the AVD(OPT )in the DDD mode (atrially paced) was 186.9 ± 52.9 ms. Intra-individually, the highest LVEF was measured at AVD(OPT). The LVEF at AVD(OPT )was significantly higher than in the AVD(OPT-50)setting (p = 0.03). However, none of the parameters of dyssynchrony changed significantly in the three settings. CONCLUSION: An optimized AV delay in CRT patients acutely leads to an improved systolic left ventricular ejection fraction without improving dyssynchrony
    corecore