3 research outputs found

    Impact of alpha-tocopherol deficiency and supplementation on sacrocaudalis and gluteal muscle fiber histopathology and morphology in horses.

    Get PDF
    BackgroundA subset of horses deficient in alpha-tocopherol (α-TP) develop muscle atrophy and vitamin E-responsive myopathy (VEM) characterized by mitochondrial alterations in the sacrocaudalis dorsalis medialis muscle (SC).ObjectivesTo quantify muscle histopathologic abnormalities in subclinical α-TP deficient horses before and after α-TP supplementation and compare with retrospective (r)VEM cases.AnimalsProspective study; 16 healthy α-TP-deficient Quarter Horses. Retrospective study; 10 retrospective vitamin E-responsive myopathy (rVEM) cases .MethodsBlood, SC, and gluteus medius (GM) biopsy specimens were obtained before (day 0) and 56 days after 5000 IU/450 kg horse/day PO water dispersible liquid α-TP (n = 8) or control (n = 8). Muscle fiber morphology and mitochondrial alterations were compared in samples from days 0 and 56 and in rVEM cases.ResultsMitochondrial alterations more common than our reference range (<2.5% affected fibers) were present in 3/8 control and 4/8 treatment horses on day 0 in SC but not in GM (mean, 2.2; range, 0%-10% of fibers). Supplementation with α-TP for 56 days did not change the percentage of fibers with mitochondrial alterations or anguloid atrophy, or fiber size in GM or SC. Clinical rVEM horses had significantly more mitochondrial alterations (rVEM SC, 13% ± 7%; GM, 3% ± 2%) and anguloid atrophy compared to subclinical day 0 horses.Conclusions and clinical importanceClinically normal α-TP-deficient horses can have mitochondrial alterations in the SC that are less severe than in atrophied VEM cases and do not resolve after 56 days of α-TP supplementation. Preventing α-TP deficiency may be of long-term importance for mitochondrial viability

    3 Dimensional photonic scans for measuring body volume and muscle mass in the standing horse.

    No full text
    REASONS FOR PERFORMING STUDY:Although muscle mass strongly influences performance, there is currently no effective means to measure the 3-dimensional muscle mass of horses. We evaluated a 3-dimensional (3D) scanning methodology for its ability to quantify torso and hindquarter volumes as a proxy for regional muscle mass in horses. OBJECTIVES:Determine the repeatability of 3D scanning volume (V) measurements and their correlation to body weight, estimated body volume and muscle/fat ultrasound (US) depth. METHODS:Handheld 3D photonic scans were performed on 16 Quarter Horses of known body weight 56 days apart (n = 32 scans) with each scan performed in duplicate (n = 32 replicates). Tail head fat, gluteal and longissimus dorsi muscle depths were measured using US. Processed scans were cropped to isolate hindquarter (above hock, caudal to tuber coxae) and torso (hindquarter plus dorsal thoracolumbar region) segments and algorithms used to calculate V. Torso and hindquarter volume were correlated with body weight and US using Pearson's correlation and with estimated torso volume (50% body weight / body density) with Bland-Altman analysis. RESULTS:Scans took 2 min with < 3.5% error for duplicate scans. Torso volume (R = 0.90, P< 0.001) and hindquarter volume (R = 0.82, P< 0.001) strongly correlated with body weight and estimated BV (R = 0.91) with low bias. Torso volume moderately correlated to mean muscle US depth (R = 0.4, P< 0.05) and tail head fat (R = 0.42, P< 0.01). Mean muscle US depth moderately correlated to body weight (R = 0.50, P< 0.01). MAIN LIMITATIONS:3D Scans determine body volume not muscle volume. CONCLUSIONS:The hand-held 3D scan provided a rapid repeatable assessment of torso and hindquarter volume strongly correlated to body weight and estimated volume. Superimposition of regional scans and volume measures could provide a practical means to follow muscle development when tail head fat depth remain constant
    corecore