12 research outputs found

    Production of nanoparticles, of powders and setup of components for power equipment

    Get PDF
    The paper presents ways to produce magnetic nanoparticles to be incorporated into magneto-bioelectronic devices where chemical processing must control composition, microstructure, phase purity, particle morphology, and control size particle, thereby reducing particle aggregation and size distribution. The methods of synthesis of magnetic nanoparticles are analyzed: physical vapor deposition, mechanical and chemical synthesis in the solution. Solution synthesis offers advantages: easy control of the size and composition of the particles, possibilities to change the surface in order to obtain a stable dispersion in different solid or liquid media. The properties of nanoscale powders, nanostructured materials and nanoparticles in solution are strongly dependent on particle size, and their dispersion state. Laboratory syntheses have been performed by analyzing the methods of synthesis of nanometric magnetic particle

    Global, regional, and national burden of other musculoskeletal disorders, 1990–2020, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021

    Get PDF
    Background Musculoskeletal disorders include more than 150 different conditions affecting joints, muscles, bones, ligaments, tendons, and the spine. To capture all health loss from death and disability due to musculoskeletal disorders, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) includes a residual musculoskeletal category for conditions other than osteoarthritis, rheumatoid arthritis, gout, low back pain, and neck pain. This category is called other musculoskeletal disorders and includes, for example, systemic lupus erythematosus and spondylopathies. We provide updated estimates of the prevalence, mortality, and disability attributable to other musculoskeletal disorders and forecasted prevalence to 2050. Methods Prevalence of other musculoskeletal disorders was estimated in 204 countries and territories from 1990 to 2020 using data from 68 sources across 23 countries from which subtraction of cases of rheumatoid arthritis, osteoarthritis, low back pain, neck pain, and gout from the total number of cases of musculoskeletal disorders was possible. Data were analysed with Bayesian meta-regression models to estimate prevalence by year, age, sex, and location. Years lived with disability (YLDs) were estimated from prevalence and disability weights. Mortality attributed to other musculoskeletal disorders was estimated using vital registration data. Prevalence was forecast to 2050 by regressing prevalence estimates from 1990 to 2020 with Socio-demographic Index as a predictor, then multiplying by population forecasts. Findings Globally, 494 million (95% uncertainty interval 431–564) people had other musculoskeletal disorders in 2020, an increase of 123·4% (116·9–129·3) in total cases from 221 million (192–253) in 1990. Cases of other musculoskeletal disorders are projected to increase by 115% (107–124) from 2020 to 2050, to an estimated 1060 million (95% UI 964–1170) prevalent cases in 2050; most regions were projected to have at least a 50% increase in cases between 2020 and 2050. The global age-standardised prevalence of other musculoskeletal disorders was 47·4% (44·9–49·4) higher in females than in males and increased with age to a peak at 65–69 years in male and female sexes. In 2020, other musculoskeletal disorders was the sixth ranked cause of YLDs globally (42·7 million [29·4–60·0]) and was associated with 83 100 deaths (73 600–91 600). Interpretation Other musculoskeletal disorders were responsible for a large number of global YLDs in 2020. Until individual conditions and risk factors are more explicitly quantified, policy responses to this burden remain a challenge. Temporal trends and geographical differences in estimates of non-fatal disease burden should not be overinterpreted as they are based on sparse, low-quality data.publishedVersio

    A Multiscale Approach to Predict Classical Losses in Soft Magnetic Composites

    No full text
    This paper presents the application of a finite element multiscale method, based on the homogenization technique, to the prediction of classical losses in soft magnetic composite materials. The experimental results, obtained for a wide range of frequencies and for various toroidal samples with different cross sections, are explained by using the considered model. It has been found that the classical losses are influenced by the dimensions of the sample, as well as by the conductivity and the length of the random contacts between the grains

    A multiscale approach to predict classical losses in soft magnetic composites

    No full text

    Parkinsonism Signs and Symptoms in Agricultural Pesticide Handlers in Washington State

    No full text
    OBJECTIVES: Examine associations between pesticide exposure and signs or symptoms of parkinsonism. METHODS: Prior to the 2014 pesticide spray season, the authors examined 38 active pesticide handlers aged 35 to 65 (median: 43.5) who participated in the State of Washington\u27s cholinesterase monitoring program in the Yakima Valley, where cholinesterase-inhibiting insecticides are applied in fruit orchards. A movement disorder specialist assessed the workers using the Unified Parkinson\u27s Disease Rating Scale (UPDRS) motor subscore 3 (UPDRS3). Participants also self-reported work and medical histories, including the UPDRS activities of daily living subscore 2 (UPDRS2). The authors explored the relation between these scores and lifetime occupational pesticide exposure while accounting for age. RESULTS: All participants were Hispanic men born in Mexico who had worked in agriculture for 4 to 43 years (median: 21 years, including 11 years applying pesticides, mostly in the United States). Ten participants (26%) reported difficulty with one or more UPDRS2 activities of daily living (maximum = 2), and nine (24%) had a UPDRS3 \u3e0 (maximum = 10). The most common symptom and sign, respectively, were excess saliva (n = 6) and action tremor (n = 5). UPDRS2 and UPDRS3 scores were unrelated to the number of years applying pesticides, but UPDRS3, especially action tremor, was positively associated with living on or by a farm. CONCLUSIONS: Symptoms and signs of parkinsonism were absent to mild in this small sample of active workers who apply cholinesterase-inhibiting insecticides in Washington State, USA. Future studies should be larger and examine older, retired workers with greater cumulative exposure to agricultural pesticides at work and home, including other types of agricultural pesticides

    Calibration of non-catching precipitation measurement instruments: A review

    No full text
    Non-catching type gauges are the emerging class of in situ precipitation measurement instruments. For these instruments, rigorous testing and calibration are more challenging than for traditional gauges. Hydrometeors characteristics like particle size, shape, fall velocity and density must be reproduced in a controlled environment to provide the reference precipitation, instead of the equivalent water flow used for catching-type gauges. They are generally calibrated by the manufacturers using internal procedures developed for the specific technology employed. No agreed methodology exists, and the adopted procedures are rarely traceable to internationally recognized standards. The EURAMET project 18NRM03 \u2018INCIPIT\u2019 on \u2018Calibration and accuracy of non-catching instruments to measure liquid/solid atmospheric precipitation\u2019, funded by the European Metrology Programme for Innovation and Research (EMPIR), was initiated in 2019 to investigate calibration and accuracy issues of non-catching measuring instruments used for liquid/solid atmospheric precipitation measurement. A survey of the existing models of non-catching type instruments was initially performed and this paper provides an overview and a description of their working principles and the adopted calibration procedures. Both literature works and technical manuals disclosed by manufacturers are summarized and discussed, while current limitations and metrological requirements are identified

    Efficient Use of Preisach Hysteresis Model in Computer Aided Design

    No full text
    The paper presents a practical detailed analysis regarding the use of the classical Preisach hysteresis model, covering all the steps, from measuring the necessary data for the model identification to the implementation in a software code for Computer Aided Design (CAD) in Electrical Engineering. An efficient numerical method is proposed and the hysteresis modeling accuracy is tested on magnetic recording materials. The procedure includes the correction of the experimental data, which are used for the hysteresis model identification, taking into account the demagnetizing effect for the sample that is measured in an open-circuit device (a vibrating sample magnetometer)
    corecore