37 research outputs found

    Magma flow inferred from AMS fabrics in a layered mafic sill, Insizwa, South Africa

    Get PDF
    The Insizwa sill, is a 25-km-diameter, >1000-m-thick layered mafic intrusion, part of the Karoo Igneous Province in South Africa. The peridotitic and gabbronoritic rocks are undeformed and mineral fabrics demonstrably result from magma flow. A horizontal, centimeter-scale model layering is visible in numerous outcrops. Plagioclase crystals are both tabular and elongated. Their preferred orientation, parallel to the layering, forms a foliation and a NW–SE lineation, respectively interpreted as the magma flow plane and flow direction. Throughout the 78 stations of this study (699 specimens), magnetic susceptibilities (K[subscript m]) range from 750 to 10,000×10[superscript (−6)] SI. The magnetic anisotropy (P[subscript j]) ranges from 1.03 to 1.08. Magnetic ellipsoids are both prolate and oblate (average T[subscript j]≈0). Anisotropy of magnetic susceptibility (AMS) fabrics are dominated by multidomain to pseudo-single domain magnetite. High-field magnetic experiments indicate that the paramagnetic contribution from the mafic silicates is less than 50 percentage for low susceptibility rock types. The anisotropy results from magnetite grain shape solely as shown by no significant increase in P[subscript j] with increasing K[subscript m]. The magnetic lineation (305°, 05°) is consistent throughout the sill at various scales and coincides with the mineral lineation in average. In contrast, the magnetic foliation (125° NE 10°) is generally perpendicular to the mineral foliation and to the layering. Several explanations for this odd configuration are discussed. The variations of magnetic parameters across the layering and field observations point to a multiple injection. The magnetic lineation is consistent with the presence of a single feeder dike situated to the SE of the sill

    Characterization of anomalous Zeeman patterns in complex atomic spectra

    Full text link
    The modeling of complex atomic spectra is a difficult task, due to the huge number of levels and lines involved. In the presence of a magnetic field, the computation becomes even more difficult. The anomalous Zeeman pattern is a superposition of many absorption or emission profiles with different Zeeman relative strengths, shifts, widths, asymmetries and sharpnesses. We propose a statistical approach to study the effect of a magnetic field on the broadening of spectral lines and transition arrays in atomic spectra. In this model, the sigma and pi profiles are described using the moments of the Zeeman components, which depend on quantum numbers and Land\'{e} factors. A graphical calculation of these moments, together with a statistical modeling of Zeeman profiles as expansions in terms of Hermite polynomials are presented. It is shown that the procedure is more efficient, in terms of convergence and validity range, than the Taylor-series expansion in powers of the magnetic field which was suggested in the past. Finally, a simple approximate method to estimate the contribution of a magnetic field to the width of transition arrays is proposed. It relies on our recently published recursive technique for the numbering of LS-terms of an arbitrary configuration.Comment: submitted to Physical Review

    Quantitative Evaluation of the Fetal Cerebellar Vermis Using the Median View on Two-Dimensional Ultrasound

    No full text
    BACKGROUND: Evaluation of the cerebellum and vermis is one of the integral parts of the fetal cranial anomaly screening. OBJECTIVES: The aim of this study was to create a nomogram for fetal vermis measurements between 17 and 30 gestational weeks. PATIENTS AND METHODS: This prospective study was conducted on 171 volunteer pregnant women between March 2013 and December 2014. Measurements of the fetal cerebellar vermis diameters in the sagittal plane were performed by two-dimensional transabdominal ultrasonography. RESULTS: Optimal median planes were obtained in 117 of the cases. Vermian diameters as a function of gestational age were expressed by regression equations and the correlation coefficients were found to be highly statistically significant (P < 0.001). The normal mean (± standard deviation) for each gestational week was also defined. CONCLUSION: This study presents the normal range of the two-dimensional fetal vermian measurements between 17 and 30 gestational weeks. In the absence of a three-dimensional ultrasonography, two-dimensional ultrasonography could also be used confidently with more time and effort

    The Ionization Potential of Tm I

    No full text
    corecore