98 research outputs found

    The Effect of Pre-Analytical Variability on the Measurement of MRM-MS-Based Mid- to High-Abundance Plasma Protein Biomarkers and a Panel of Cytokines

    Get PDF
    Blood sample processing and handling can have a significant impact on the stability and levels of proteins measured in biomarker studies. Such pre-analytical variability needs to be well understood in the context of the different proteomics platforms available for biomarker discovery and validation. In the present study we evaluated different types of blood collection tubes including the BD P100 tube containing protease inhibitors as well as CTAD tubes, which prevent platelet activation. We studied the effect of different processing protocols as well as delays in tube processing on the levels of 55 mid and high abundance plasma proteins using novel multiple-reaction monitoring-mass spectrometry (MRM-MS) assays as well as 27 low abundance cytokines using a commercially available multiplexed bead-based immunoassay. The use of P100 tubes containing protease inhibitors only conferred proteolytic protection for 4 cytokines and only one MRM-MS-measured peptide. Mid and high abundance proteins measured by MRM are highly stable in plasma left unprocessed for up to six hours although platelet activation can also impact the levels of these proteins. The levels of cytokines were elevated when tubes were centrifuged at cold temperature, while low levels were detected when samples were collected in CTAD tubes. Delays in centrifugation also had an impact on the levels of cytokines measured depending on the type of collection tube used. Our findings can help in the development of guidelines for blood collection and processing for proteomic biomarker studies

    Effects of Separate and Concomitant TLR-2 and TLR-4 Activation in Peripheral Blood Mononuclear Cells of Newborn and Adult Horses

    Get PDF
    Deficient innate and adaptive immune responses cause newborn mammals to be more susceptible to bacterial infections than adult individuals. Toll-like receptors (TLRs) are known to play a pivotal role in bacterial recognition and subsequent immune responses. Several studies have indicated that activation of certain TLRs, in particular TLR-2, can result in suppression of inflammatory pathology. In this study, we isolated peripheral blood mononuclear cells (PBMCs) from adult and newborn horses to investigate the influence of TLR-2 activation on the inflammatory response mediated by TLR-4. Data were analysed in a Bayesian hierarchical linear regression model, accounting for variation between horses. In general, cytokine responses were lower in PBMCs derived from foals compared with PBMCs from adult horses. Whereas in foal PBMCs expression of TLR-2, TLR-4, and TLR-9 was not influenced by separate and concomitant TLR-2 and TLR-4 activation, in adult horse PBMCs, both TLR ligands caused significant up-regulation of TLR-2 and down-regulation of TLR-9. Moreover, in adult horse PBMCs, interleukin-10 protein production and mRNA expression increased significantly following concomitant TLR-2 and TLR-4 activation (compared with sole TLR-4 activation). In foal PBMCs, this effect was not observed. In both adult and foal PBMCs, the lipopolysaccharide-induced pro-inflammatory response was not influenced by pre-incubation and co-stimulation with the specific TLR-2 ligand Pam3-Cys-Ser-Lys4. This indicates that the published data on other species cannot be translated directly to the horse, and stresses the necessity to confirm results obtained in other species in target animals. Future research should aim to identify other methods or substances that enhance TLR functionality and bacterial defence in foals, thereby lowering susceptibility to life-threatening infections during the first period of life

    Neighborhood level risk factors for type 1 diabetes in youth: the SEARCH case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>European ecologic studies suggest higher socioeconomic status is associated with higher incidence of type 1 diabetes. Using data from a case-control study of diabetes among racially/ethnically diverse youth in the United States (U.S.), we aimed to evaluate the independent impact of neighborhood characteristics on type 1 diabetes risk. Data were available for 507 youth with type 1 diabetes and 208 healthy controls aged 10-22 years recruited in South Carolina and Colorado in 2003-2006. Home addresses were used to identify Census tracts of residence. Neighborhood-level variables were obtained from 2000 U.S. Census. Multivariate generalized linear mixed models were applied.</p> <p>Results</p> <p>Controlling for individual risk factors (age, gender, race/ethnicity, infant feeding, birth weight, maternal age, number of household residents, parental education, income, state), higher neighborhood household income (p = 0.005), proportion of population in managerial jobs (p = 0.02), with at least high school education (p = 0.005), working outside the county (p = 0.04) and vehicle ownership (p = 0.03) were each independently associated with increased odds of type 1 diabetes. Conversely, higher percent minority population (p = 0.0003), income from social security (p = 0.002), proportion of crowded households (0.0497) and poverty (p = 0.008) were associated with a decreased odds.</p> <p>Conclusions</p> <p>Our study suggests that neighborhood characteristics related to greater affluence, occupation, and education are associated with higher type 1 diabetes risk. Further research is needed to understand mechanisms underlying the influence of neighborhood context.</p

    The use of 3D surface scanning for the measurement and assessment of the human foot

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A number of surface scanning systems with the ability to quickly and easily obtain 3D digital representations of the foot are now commercially available. This review aims to present a summary of the reported use of these technologies in footwear development, the design of customised orthotics, and investigations for other ergonomic purposes related to the foot.</p> <p>Methods</p> <p>The PubMed and ScienceDirect databases were searched. Reference lists and experts in the field were also consulted to identify additional articles. Studies in English which had 3D surface scanning of the foot as an integral element of their protocol were included in the review.</p> <p>Results</p> <p>Thirty-eight articles meeting the search criteria were included. Advantages and disadvantages of using 3D surface scanning systems are highlighted. A meta-analysis of studies using scanners to investigate the changes in foot dimensions during varying levels of weight bearing was carried out.</p> <p>Conclusions</p> <p>Modern 3D surface scanning systems can obtain accurate and repeatable digital representations of the foot shape and have been successfully used in medical, ergonomic and footwear development applications. The increasing affordability of these systems presents opportunities for researchers investigating the foot and for manufacturers of foot related apparel and devices, particularly those interested in producing items that are customised to the individual. Suggestions are made for future areas of research and for the standardization of the protocols used to produce foot scans.</p

    Organotypic modelling as a means of investigating epithelial-stromal interactions during tumourigenesis

    Get PDF
    The advent of co-culture approaches has allowed researchers to more accurately model the behaviour of epithelial cells in cell culture studies. The initial work on epidermal modelling allowed the development of reconstituted epidermis, growing keratinocytes on top of fibroblasts seeded in a collagen gel at an air-liquid interface to generate terminally differentiated 'skin equivalents'. In addition to developing ex vivo skin sheets for the treatment of burns victims, such cultures have also been used as a means of investigating both the development and repair of the epidermis, in more relevant conditions than simple two-dimensional culture, but without the use of animals. More recently, by varying the cell types used and adjusting the composition of the matrix components, this physiological system can be adapted to allow the study of interactions between tumour cells and their surrounding stroma, particularly with regards to how such interactions regulate invasion. Here we provide a summary of the major themes involved in tumour progression and consider the evolution of the approaches used to study cancer cell behaviour. Finally, we review how organotypic models have facilitated the study of several key pathways in cancer development and invasion, and speculate on the exciting future roles for these models in cancer research

    Whole genome scan reveals the genetic signature of African Ankole cattle breed and potential for higher quality beef

    Get PDF
    BACKGROUND: Africa is home to numerous cattle breeds whose diversity has been shaped by subtle combinations of human and natural selection. African Sanga cattle are an intermediate type of cattle resulting from interbreeding between Bos taurus and Bos indicus subspecies. Recently, research has asserted the potential of Sanga breeds for commercial beef production with better meat quality as compared to Bos indicus breeds. Here, we identified meat quality related gene regions that are positively selected in Ankole (Sanga) cattle breeds as compared to indicus (Boran, Ogaden, and Kenana) breeds using cross-population (XP-EHH and XP-CLR) statistical methods. RESULTS: We identified 238 (XP-EHH) and 213 (XP-CLR) positively selected genes, of which 97 were detected from both statistics. Among the genes obtained, we primarily reported those involved in different biological process and pathways associated with meat quality traits. Genes (CAPZB, COL9A2, PDGFRA, MAP3K5, ZNF410, and PKM2) involved in muscle structure and metabolism affect meat tenderness. Genes (PLA2G2A, PARK2, ZNF410, MAP2K3, PLCD3, PLCD1, and ROCK1) related to intramuscular fat (IMF) are involved in adipose metabolism and adipogenesis. MB and SLC48A1 affect meat color. In addition, we identified genes (TIMP2, PKM2, PRKG1, MAP3K5, and ATP8A1) related to feeding efficiency. Among the enriched Gene Ontology Biological Process (GO BP) terms, actin cytoskeleton organization, actin filament-based process, and protein ubiquitination are associated with meat tenderness whereas cellular component organization, negative regulation of actin filament depolymerization and negative regulation of protein complex disassembly are involved in adipocyte regulation. The MAPK pathway is responsible for cell proliferation and plays an important role in hyperplastic growth, which has a positive effect on meat tenderness. CONCLUSION: Results revealed several candidate genes positively selected in Ankole cattle in relation to meat quality characteristics. The genes identified are involved in muscle structure and metabolism, and adipose metabolism and adipogenesis. These genes help in the understanding of the biological mechanisms controlling beef quality characteristics in African Ankole cattle. These results provide a basis for further research on the genomic characteristics of Ankole and other Sanga cattle breeds for quality beef. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12863-016-0467-1) contains supplementary material, which is available to authorized users

    Primary biliary cirrhosis

    Get PDF
    Primary biliary cirrhosis (PBC) is an immune-mediated chronic cholestatic liver disease with a slowly progressive course. Without treatment, most patients eventually develop fibrosis and cirrhosis of the liver and may need liver transplantation in the late stage of disease. PBC primarily affects women (female preponderance 9–10:1) with a prevalence of up to 1 in 1,000 women over 40 years of age. Common symptoms of the disease are fatigue and pruritus, but most patients are asymptomatic at first presentation. The diagnosis is based on sustained elevation of serum markers of cholestasis, i.e., alkaline phosphatase and gamma-glutamyl transferase, and the presence of serum antimitochondrial antibodies directed against the E2 subunit of the pyruvate dehydrogenase complex. Histologically, PBC is characterized by florid bile duct lesions with damage to biliary epithelial cells, an often dense portal inflammatory infiltrate and progressive loss of small intrahepatic bile ducts. Although the insight into pathogenetic aspects of PBC has grown enormously during the recent decade and numerous genetic, environmental, and infectious factors have been disclosed which may contribute to the development of PBC, the precise pathogenesis remains enigmatic. Ursodeoxycholic acid (UDCA) is currently the only FDA-approved medical treatment for PBC. When administered at adequate doses of 13–15 mg/kg/day, up to two out of three patients with PBC may have a normal life expectancy without additional therapeutic measures. The mode of action of UDCA is still under discussion, but stimulation of impaired hepatocellular and cholangiocellular secretion, detoxification of bile, and antiapoptotic effects may represent key mechanisms. One out of three patients does not adequately respond to UDCA therapy and may need additional medical therapy and/or liver transplantation. This review summarizes current knowledge on the clinical, diagnostic, pathogenetic, and therapeutic aspects of PBC

    Identification of Lysine 37 of Histone H2B as a Novel Site of Methylation

    Get PDF
    Recent technological advancements have allowed for highly-sophisticated mass spectrometry-based studies of the histone code, which predicts that combinations of post-translational modifications (PTMs) on histone proteins result in defined biological outcomes mediated by effector proteins that recognize such marks. While significant progress has been made in the identification and characterization of histone PTMs, a full appreciation of the complexity of the histone code will require a complete understanding of all the modifications that putatively contribute to it. Here, using the top-down mass spectrometry approach for identifying PTMs on full-length histones, we report that lysine 37 of histone H2B is dimethylated in the budding yeast Saccharomyces cerevisiae. By generating a modification-specific antibody and yeast strains that harbor mutations in the putative site of methylation, we provide evidence that this mark exist in vivo. Importantly, we show that this lysine residue is highly conserved through evolution, and provide evidence that this methylation event also occurs in higher eukaryotes. By identifying a novel site of histone methylation, this study adds to our overall understanding of the complex number of histone modifications that contribute to chromatin function
    corecore