1,407 research outputs found

    Line transect abundance estimation with uncertain detection on the trackline

    Get PDF
    Bibliography: leaves 225-233.After critically reviewing developments in line transect estimation theory to date, general likelihood functions are derived for the case in which detection probabilities are modelled as functions of any number of explanatory variables and detection of animals on the trackline (i.e. directly in the observer's path) is not certain. Existing models are shown to correspond to special cases of the general models. Maximum likelihood estimators are derived for some special cases of the general model and some existing line transect estimators are shown to correspond to maximum likelihood estimators for other special cases. The likelihoods are shown to be extensions of existing mark-recapture likelihoods as well as being generalizations of existing line transect likelihoods. Two new abundance estimators are developed. The first is a Horvitz-Thompson-like estimator which utilizes the fact that for point estimation of abundance the density of perpendicular distances in the population can be treated as known in appropriately designed line transect surveys. The second is based on modelling the probability density function of detection probabilities in the population. Existing line transect estimators are shown to correspond to special cases of the new Horvitz-Thompson-like estimator, so that this estimator, together with the general likelihoods, provides a unifying framework for estimating abundance from line transect surveys

    Nanoscale magnetic structure of ferromagnet/antiferromagnet manganite multilayers

    Full text link
    Polarized Neutron Reflectometry and magnetometry measurements have been used to obtain a comprehensive picture of the magnetic structure of a series of La{2/3}Sr{1/3}MnO{3}/Pr{2/3}Ca{1/3}MnO{3} (LSMO/PCMO) superlattices, with varying thickness of the antiferromagnetic (AFM) PCMO layers (0<=t_A<=7.6 nm). While LSMO presents a few magnetically frustrated monolayers at the interfaces with PCMO, in the latter a magnetic contribution due to FM inclusions within the AFM matrix was found to be maximized at t_A~3 nm. This enhancement of the FM moment occurs at the matching between layer thickness and cluster size, where the FM clusters would find the optimal strain conditions to be accommodated within the "non-FM" material. These results have important implications for tuning phase separation via the explicit control of strain.Comment: 4 pages, submitted to PR

    Geometric Modular Action, Wedge Duality and Lorentz Covariance are Equivalent for Generalized Free Fields

    Full text link
    The Tomita-Takesaki modular groups and conjugations for the observable algebras of space-like wedges and the vacuum state are computed for translationally covariant, but possibly not Lorentz covariant, generalized free quantum fields in arbitrary space-time dimension d. It is shown that for d4d\geq 4 the condition of geometric modular action (CGMA) of Buchholz, Dreyer, Florig and Summers \cite{BDFS}, Lorentz covariance and wedge duality are all equivalent in these models. The same holds for d=3 if there is a mass gap. For massless fields in d=3, and for d=2 and arbitrary mass, CGMA does not imply Lorentz covariance of the field itself, but only of the maximal local net generated by the field

    Classification of subsystems for graded-local nets with trivial superselection structure

    Get PDF
    We classify Haag-dual Poincar\'e covariant subsystems \B\subset \F of a graded-local net \F on 4D Minkowski spacetime which satisfies standard assumptions and has trivial superselection structure. The result applies to the canonical field net \F_\A of a net \A of local observables satisfying natural assumptions. As a consequence, provided that it has no nontrivial internal symmetries, such an observable net \A is generated by (the abstract versions of) the local energy-momentum tensor density and the observable local gauge currents which appear in the algebraic formulation of the quantum Noether theorem. Moreover, for a net \A of local observables as above, we also classify the Poincar\'e covariant local extensions \B \supset \A which preserve the dynamics.Comment: 38 pages, LaTe

    An Algebraic Jost-Schroer Theorem for Massive Theories

    Full text link
    We consider a purely massive local relativistic quantum theory specified by a family of von Neumann algebras indexed by the space-time regions. We assume that, affiliated with the algebras associated to wedge regions, there are operators which create only single particle states from the vacuum (so-called polarization-free generators) and are well-behaved under the space-time translations. Strengthening a result of Borchers, Buchholz and Schroer, we show that then the theory is unitarily equivalent to that of a free field for the corresponding particle type. We admit particles with any spin and localization of the charge in space-like cones, thereby covering the case of string-localized covariant quantum fields.Comment: 21 pages. The second (and crucial) hypothesis of the theorem has been relaxed and clarified, thanks to the stimulus of an anonymous referee. (The polarization-free generators associated with wedge regions, which always exist, are assumed to be temperate.

    The Hot Bang state of massless fermions

    Get PDF
    In 2002, a method has been proposed by Buchholz et al. in the context of Local Quantum Physics, to characterize states that are locally in thermodynamic equilibrium. It could be shown for the model of massless bosons that these states exhibit quite interesting properties. The mean phase-space density satisfies a transport equation, and many of these states break time reversal symmetry. Moreover, an explicit example of such a state, called the Hot Bang state, could be found, which models the future of a temperature singularity. However, although the general results carry over to the fermionic case easily, the proof of existence of an analogue of the Hot Bang state is not quite that straightforward. The proof will be given in this paper. Moreover, we will discuss some of the mathematical subtleties which arise in the fermionic case.Comment: 17 page

    Charged sectors, spin and statistics in quantum field theory on curved spacetimes

    Full text link
    The first part of this paper extends the Doplicher-Haag-Roberts theory of superselection sectors to quantum field theory on arbitrary globally hyperbolic spacetimes. The statistics of a superselection sector may be defined as in flat spacetime and each charge has a conjugate charge when the spacetime possesses non-compact Cauchy surfaces. In this case, the field net and the gauge group can be constructed as in Minkowski spacetime. The second part of this paper derives spin-statistics theorems on spacetimes with appropriate symmetries. Two situations are considered: First, if the spacetime has a bifurcate Killing horizon, as is the case in the presence of black holes, then restricting the observables to the Killing horizon together with "modular covariance" for the Killing flow yields a conformally covariant quantum field theory on the circle and a conformal spin-statistics theorem for charged sectors localizable on the Killing horizon. Secondly, if the spacetime has a rotation and PT symmetry like the Schwarzschild-Kruskal black holes, "geometric modular action" of the rotational symmetry leads to a spin-statistics theorem for charged covariant sectors where the spin is defined via the SU(2)-covering of the spatial rotation group SO(3).Comment: latex2e, 73 page

    The Reeh-Schlieder property for thermal field theories

    Get PDF
    We show that the Reeh-Schlieder property w.r.t. the KMS-vector is a direct consequence of locality, additivity and the relativistic KMS-condition. The latter characterises the thermal equilibrium states of a relativistic quantum field theory. The statement remains vaild even if the given equilibrium state breaks spatial translation invariance.Comment: plain tex, 10 page
    corecore