9 research outputs found

    Halogen bonding with carbon:directional assembly of non-derivatised aromatic carbon systems into robust supramolecular ladder architectures †

    Get PDF
    Carbon, although the central element in organic chemistry, has been traditionally neglected as a target for directional supramolecular interactions. The design of supramolecular structures involving carbon-rich molecules, such as arene hydrocarbons, has been limited almost exclusively to non-directional π-stacking, or derivatisation with heteroatoms to introduce molecular assembly recognition sites. As a result, the predictable assembly of non-derivatised, carbon-only π-systems using directional non-covalent interactions remains an unsolved fundamental challenge of solid-state supramolecular chemistry. Here, we propose and validate a different paradigm for the reliable assembly of carbon-only aromatic systems into predictable supramolecular architectures: not through non-directional π-stacking, but via specific and directional halogen bonding. We present a systematic experimental, theoretical and database study of halogen bonds to carbon-only π-systems (C-I⋯πC bonds), focusing on the synthesis and structural analysis of cocrystals with diversely-sized and -shaped non-derivatised arenes, from one-ring (benzene) to 15-ring (dicoronylene) polycyclic atomatic hydrocarbons (PAHs), and fullerene C60, along with theoretical calculations and a systematic analysis of the Cambridge Structural Database. This study establishes C-I⋯πC bonds as directional interactions to arrange planar and curved carbon-only aromatic systems into predictable supramolecular motifs. In &gt;90% of herein presented structures, the C-I⋯πC bonds to PAHs lead to a general ladder motif, in which the arenes act as the rungs and halogen bond donors as the rails, establishing a unique example of a supramolecular synthon based on carbon-only molecules. Besides fundamental importance in the solid-state and supramolecular chemistry of arenes, this synthon enables access to materials with exciting properties based on simple, non-derivatised aromatic systems, as seen from large red and blue shifts in solid-state luminescence and room-temperature phosphorescence upon cocrystallisation.</p

    Azo dye polyelectrolyte multilayer films reversibly re-soluble with visible light

    Get PDF
    Polymeric multilayer films were prepared using a layer-by-layer (LBL) technique on glass surfaces, by repeated and sequential dipping into dilute aqueous solutions of various combinations of water-soluble polyanions (polyacrylic acid (PAA)), polycations (polyallylamine hydrochloride (PAH) or chitosan (CS)), with bi-functional water-soluble cationic azo dyes bismark brown R bismarck brown red or bismark brown Y (BBY), or anionic azo dyes allura red (ALR) or amaranth (AMA), as ionic cross-linkers. The electrostatically-assembled ionically-paired films showed good long-term stability to dissolution, with no re-solubility in water. However, upon exposure to low power visible light under running water, the films photo-disassembled back to their water-soluble constituent components, via structural photo-isomerization of the azo ionic crosslinkers. The relative rate of the disassembly (RRD) of the films was established using UV-Vis spectroscopy, demonstrating that these assemblies can in principle represent fully recyclable, environmentally structurally degradable materials triggered by exposure to sunlight, with full recovery of starting components. A density functional theory treatment of the allura red azo dye rationalizes the geometrical isomerization mechanism of the photo-disassembly and provides insight into the energetics of the optically-induced structural changes that trigger the disassembly and recovery

    Crystal structure of octane-1,8-diaminium 4,4′-(diazene-1,2-diyl)dibenzoate monohydrate

    No full text
    The title salt, C8H22N22+·C14H8N2O42−·H2O, represents a pseudo-polymer ionic material, resulting from the self-organizing behavior of 4,4′-azinodibenzoate dianions and doubly protonated, 1,8-diaminium-octane cations in aqueous solution. The asymmetric unit consists of two halves of octane 1,8-diaminium cations (the complete cations are both generated by crystallographic inversion symmetry), a 4,4′-azinodibenzoate anion [dihedral angle between the aromatic rings = 10.22 (4)°] and a water molecule of crystallization. One of the cations is in a fully extended linear conformation while the second one has a terminal C—C—C—N gauche conformation. In the crystal, the cations, anions and water molecules are linked into a three-dimensional network via a complex pattern of charge-assisted N—H...O and O—H...O hydrogen bonds

    DataSheet1_Azo dye polyelectrolyte multilayer films reversibly re-soluble with visible light.ZIP

    No full text
    Polymeric multilayer films were prepared using a layer-by-layer (LBL) technique on glass surfaces, by repeated and sequential dipping into dilute aqueous solutions of various combinations of water-soluble polyanions (polyacrylic acid (PAA)), polycations (polyallylamine hydrochloride (PAH) or chitosan (CS)), with bi-functional water-soluble cationic azo dyes bismark brown R bismarck brown red or bismark brown Y (BBY), or anionic azo dyes allura red (ALR) or amaranth (AMA), as ionic cross-linkers. The electrostatically-assembled ionically-paired films showed good long-term stability to dissolution, with no re-solubility in water. However, upon exposure to low power visible light under running water, the films photo-disassembled back to their water-soluble constituent components, via structural photo-isomerization of the azo ionic crosslinkers. The relative rate of the disassembly (RRD) of the films was established using UV-Vis spectroscopy, demonstrating that these assemblies can in principle represent fully recyclable, environmentally structurally degradable materials triggered by exposure to sunlight, with full recovery of starting components. A density functional theory treatment of the allura red azo dye rationalizes the geometrical isomerization mechanism of the photo-disassembly and provides insight into the energetics of the optically-induced structural changes that trigger the disassembly and recovery.</p

    Table1_Azo dye polyelectrolyte multilayer films reversibly re-soluble with visible light.DOCX

    No full text
    Polymeric multilayer films were prepared using a layer-by-layer (LBL) technique on glass surfaces, by repeated and sequential dipping into dilute aqueous solutions of various combinations of water-soluble polyanions (polyacrylic acid (PAA)), polycations (polyallylamine hydrochloride (PAH) or chitosan (CS)), with bi-functional water-soluble cationic azo dyes bismark brown R bismarck brown red or bismark brown Y (BBY), or anionic azo dyes allura red (ALR) or amaranth (AMA), as ionic cross-linkers. The electrostatically-assembled ionically-paired films showed good long-term stability to dissolution, with no re-solubility in water. However, upon exposure to low power visible light under running water, the films photo-disassembled back to their water-soluble constituent components, via structural photo-isomerization of the azo ionic crosslinkers. The relative rate of the disassembly (RRD) of the films was established using UV-Vis spectroscopy, demonstrating that these assemblies can in principle represent fully recyclable, environmentally structurally degradable materials triggered by exposure to sunlight, with full recovery of starting components. A density functional theory treatment of the allura red azo dye rationalizes the geometrical isomerization mechanism of the photo-disassembly and provides insight into the energetics of the optically-induced structural changes that trigger the disassembly and recovery.</p

    Halogen bonding with carbon: directional assembly of non-derivatised aromatic carbon systems into robust supramolecular ladder architectures

    No full text
    Carbon, although the central element in organic chemistry, has been traditionally neglected as a target for directional supramolecular interactions. The design of supramolecular structures involving carbon-rich molecules, such as arene hydrocarbons, has been limited almost exclusively to non-directional π-stacking, or derivatisation with heteroatoms to introduce molecular assembly recognition sites. As a result, the predictable assembly of non-derivatised, carbon-only π-systems using directional non-covalent interactions remains an unsolved fundamental challenge of solid-state supramolecular chemistry. Here, we propose and validate a different paradigm for the reliable assembly of carbon-only aromatic systems into predictable supramolecular architectures: not through non-directional π-stacking, but via specific and directional halogen bonding. We present a systematic experimental, theoretical and database study of halogen bonds to carbon-only π-systems (C-I⋯πC bonds), focusing on the synthesis and structural analysis of cocrystals with diversely-sized and -shaped non-derivatised arenes, from one-ring (benzene) to 15-ring (dicoronylene) polycyclic atomatic hydrocarbons (PAHs), and fullerene C60, along with theoretical calculations and a systematic analysis of the Cambridge Structural Database. This study establishes C-I⋯πC bonds as directional interactions to arrange planar and curved carbon-only aromatic systems into predictable supramolecular motifs. In &gt;90% of herein presented structures, the C-I⋯πC bonds to PAHs lead to a general ladder motif, in which the arenes act as the rungs and halogen bond donors as the rails, establishing a unique example of a supramolecular synthon based on carbon-only molecules. Besides fundamental importance in the solid-state and supramolecular chemistry of arenes, this synthon enables access to materials with exciting properties based on simple, non-derivatised aromatic systems, as seen from large red and blue shifts in solid-state luminescence and room-temperature phosphorescence upon cocrystallisation.</p
    corecore