28 research outputs found

    Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations

    Get PDF
    Biomolecular condensates form via coupled associative and segregative phase transitions of multivalent associative macromolecules. Phase separation coupled to percolation is one example of such transitions. Here, we characterize molecular and mesoscale structural descriptions of condensates formed by intrinsically disordered prion-like low complexity domains (PLCDs). These systems conform to sticker-and-spacers architectures. Stickers are cohesive motifs that drive associative interactions through reversible crosslinking and spacers affect the cooperativity of crosslinking and overall macromolecular solubility. Our computations reproduce experimentally measured sequence-specific phase behaviors of PLCDs. Within simulated condensates, networks of reversible inter-sticker crosslinks organize PLCDs into small-world topologies. The overall dimensions of PLCDs vary with spatial location, being most expanded at and preferring to be oriented perpendicular to the interface. Our results demonstrate that even simple condensates with one type of macromolecule feature inhomogeneous spatial organizations of molecules and interfacial features that likely prime them for biochemical activity

    Conserved Helix-Flanking Prolines Modulate Intrinsically Disordered Protein:Target Affinity by Altering the Lifetime of the Bound Complex.

    Get PDF
    Appropriate integration of cellular signals requires a delicate balance of ligand-target binding affinities. Increasing the level of residual structure in intrinsically disordered proteins (IDPs), which are overrepresented in these cellular processes, has been shown previously to enhance binding affinities and alter cellular function. Conserved proline residues are commonly found flanking regions of IDPs that become helical upon interacting with a partner protein. Here, we mutate these helix-flanking prolines in p53 and MLL and find opposite effects on binding affinity upon an increase in free IDP helicity. In both cases, changes in affinity were due to alterations in dissociation, not association, rate constants, which is inconsistent with conformational selection mechanisms. We conclude that, contrary to previous suggestions, helix-flanking prolines do not regulate affinity by modulating the rate of complex formation. Instead, they influence binding affinities by controlling the lifetime of the bound complex

    Disorder Predictors Also Predict Backbone Dynamics for a Family of Disordered Proteins

    Get PDF
    Several algorithms have been developed that use amino acid sequences to predict whether or not a protein or a region of a protein is disordered. These algorithms make accurate predictions for disordered regions that are 30 amino acids or longer, but it is unclear whether the predictions can be directly related to the backbone dynamics of individual amino acid residues. The nuclear Overhauser effect between the amide nitrogen and hydrogen (NHNOE) provides an unambiguous measure of backbone dynamics at single residue resolution and is an excellent tool for characterizing the dynamic behavior of disordered proteins. In this report, we show that the NHNOE values for several members of a family of disordered proteins are highly correlated with the output from three popular algorithms used to predict disordered regions from amino acid sequence. This is the first test between an experimental measure of residue specific backbone dynamics and disorder predictions. The results suggest that some disorder predictors can accurately estimate the backbone dynamics of individual amino acids in a long disordered region

    Structure, Dynamics, and Evolution of the Intrinsically Disordered p53 Transactivation Domain

    Get PDF
    in numerous disease states, including cancers and neurodegenerative diseases. All proteins are dynamic in nature, occupying a range of conformational flexibilities. This inherent flexibility is required for their function, with ordered proteins and IDPs representing the least flexible, and most flexible, respectively. As such IDPs possess little to no stable tertiary or secondary structure, they instead form broad ensembles of heterogeneous structures, which fluctuate over multiple time scales. Although IDPs often lack stable secondary structure they can assume a more stable structure in the presence of their binding partners in a coupled folding binding reaction. The phenomenon of the dynamic behavior of IDPs is believed to confer several functional advantages but remains poorly understood. To that end the dynamic and structural properties of a family of IDPs - p53 transactivation domains (TAD) was measured and compared with the sequence divergence. Interestingly we were able to find stronger correlations between the dynamic properties and the sequence divergence than between the structure and sequence, suggesting that the dynamic properties are the primary trait being xiii conserved by evolution. These correlations were strongest within clusters of the IDPs that correlated with known protein binding sites. Additionally, we show strong correlations between the several available disorder predictors and the backbone dynamics of this family of IDPs. This indicates the potential of predicting the dynamic behavior of proteins, which may be beneficial in future drug design. The limited number of atomic models currently determined for IDPs hampers understanding of how their amino acid sequences dictate the structural ensembles they adopt. The current dearth of atomic models for IDPs makes it difficult to test the following hypotheses: 1. The structural ensembles of IDPs are dictated by local interactions. 2. The structural ensembles of IDPs will be similar above a certain sequence identity threshold. Based on the premise that sequence determines structure, structural ensembles were determined and compared for a set of homologous IDPs. Utilizing orthologues allows for the identification of important structural features and behaviors by virtue of their conservation. A new methodology of creating ensembles was implemented that broadly samples conformational space. This allowed us to find recurring local structural features within the structural ensembles even between the more distantly related homologues that were processed. This method of ensemble creation is also the first method to show convergence of secondary structural characteristics between discrete ensembles

    p53 Phosphomimetics Preserve Transient Secondary Structure but Reduce Binding to Mdm2 and MdmX

    No full text
    The disordered p53 transactivation domain (p53TAD) contains specific levels of transient helical secondary structure that are necessary for its binding to the negative regulators, mouse double minute 2 (Mdm2) and MdmX. The interactions of p53 with Mdm2 and MdmX are also modulated by posttranslational modifications (PTMs) of p53TAD including phosphorylation at S15, T18 and S20 that inhibits p53-Mdm2 binding. It is unclear whether the levels of transient secondary structure in p53TAD are changed by phosphorylation or other PTMs. We used phosphomimetic mutants to determine if adding a negative charge at positions 15 and 18 has any effect on the transient secondary structure of p53TAD and protein-protein binding. Using a combination of biophysical and structural methods, we investigated the effects of single and multisite phosphomimetics on the transient secondary structure of p53TAD and its interaction with Mdm2, MdmX, and the KIX domain. The phosphomimetics reduced Mdm2 and MdmX binding affinity by 3–5-fold, but resulted in minimal changes in transient secondary structure, suggesting that the destabilizing effect of phosphorylation on the p53TAD-Mdm2 interaction is primarily electrostatic. Phosphomimetics had no effect on the p53-KIX interaction, suggesting that increased binding of phosphorylated p53 to KIX may be influenced by decreased competition with its negative regulators

    Relationship Between Gene Duplicability and Diversifiability in the Topology of Biochemical Networks

    Get PDF
    Background: Selective gene duplicability, the extensive expansion of a small number of gene families, is universal. Quantitatively, the number of genes (P(K)) with K duplicates in a genome decreases precipitously as K increases, and often follows a power law (P(k)∝k-α). Functional diversification, either neo- or sub-functionalization, is a major evolution route for duplicate genes. Results: Using three lines of genomic datasets, we studied the relationship between gene duplicability and diversifiability in the topology of biochemical networks. First, we explored scenario where two pathways in the biochemical networks antagonize each other. Synthetic knockout of respective genes for the two pathways rescues the phenotypic defects of each individual knockout. We identified duplicate gene pairs with sufficient divergences that represent this antagonism relationship in the yeast S. cerevisiae. Such pairs overwhelmingly belong to large gene families, thus tend to have high duplicability. Second, we used distances between proteins of duplicate genes in the protein interaction network as a metric of their diversification. The higher a gene’s duplicate count, the further the proteins of this gene and its duplicates drift away from one another in the networks, which is especially true for genetically antagonizing duplicate genes. Third, we computed a sequence-homology-based clustering coefficient to quantify sequence diversifiability among duplicate genes – the lower the coefficient, the more the sequences have diverged. Duplicate count (K) of a gene is negatively correlated to the clustering coefficient of its duplicates, suggesting that gene duplicability is related to the extent of sequence divergence within the duplicate gene family. Conclusion: Thus, a positive correlation exists between gene diversifiability and duplicability in the context of biochemical networks - an improvement of our understanding of gene duplicability

    Uncoupling the Folding and Binding of an Intrinsically Disordered Protein

    No full text
    The relationship between helical stability and binding affinity was examined for the intrinsically disordered transactivation domain of the myeloblastosis oncoprotein, c-Myb, and its ordered binding partner, KIX. A series of c-Myb mutants was designed to either increase or decrease helical stability without changing the binding interface with KIX. This included a complimentary series of A, G, P, and V mutants at three non-interacting sites. We were able to use the glycine mutants as a reference state and show a strong correlation between binding affinity and helical stability. The intrinsic helicity of c-Myb is 21%, and helicity values of the mutants ranged from 8% to 28%. The c-Myb helix is divided into two conformationally distinct segments. The N-terminal segment, from K291–L301, has an average helicity greater than 60% and the C-terminal segment, from S304–L315, has an average helicity less than 10%. We observed different effects on binding when these two segments were mutated. Mutants in the N-terminal segment that increased helicity had no effect on the binding affinity to KIX, while helix destabilizing glycine and proline mutants reduced binding affinity by more than 1 kcal/mol. Mutants that either increased or decreased helical stability in the C-terminal segment had almost no effect on binding. However, several of the mutants reveal the presence of multiple conformations accessible in the bound state based on changes in enthalpy and linkage analysis of binding free energies. These results may explain the high level of sequence identity (\u3e 90%), even at non-interacting sites, for c-Myb homologues
    corecore