2 research outputs found

    Deciphering and Targeting Oncogenic Mutations and Pathways in Breast Cancer

    No full text
    : Advances in DNA and RNA sequencing revealed substantially greater genomic complexity in breast cancer than simple models of a few driver mutations would suggest. Only very few, recurrent mutations or copy-number variations in cancer-causing genes have been identified. The two most common alterations in breast cancer are TP53 (affecting the majority of triple-negative breast cancers) and PIK3CA (affecting almost half of estrogen receptor-positive cancers) mutations, followed by a long tail of individually rare mutations affecting <1%-20% of cases. Each cancer harbors from a few dozen to a few hundred potentially high-functional impact somatic variants, along with a much larger number of potentially high-functional impact germline variants. It is likely that it is the combined effect of all genomic variations that drives the clinical behavior of a given cancer. Furthermore, entirely new classes of oncogenic events are being discovered in the noncoding areas of the genome and in noncoding RNA species driven by errors in RNA editing. In light of this complexity, it is not unexpected that, with the exception of HER2 amplification, no robust molecular predictors of benefit from targeted therapies have been identified. In this review, we summarize the current genomic portrait of breast cancer, focusing on genetic aberrations that are actively being targeted with investigational drugs. IMPLICATIONS FOR PRACTICE: Next-generation sequencing is now widely available in the clinic, but interpretation of the results is challenging, and its impact on treatment selection is often limited. This work provides an overview of frequently encountered molecular abnormalities in breast cancer and discusses their potential therapeutic implications. This review emphasizes the importance of administering investigational targeted therapies, or off-label use of approved targeted drugs, in the context of a formal clinical trial or registry programs to facilitate learning about the clinical utility of tumor target profiling

    Histopathological growth patterns and tumor-infiltrating lymphocytes in breast cancer liver metastases

    Get PDF
    Liver is the third most common organ for breast cancer (BC) metastasis. Two main histopathological growth patterns (HGP) exist in liver metastases (LM): desmoplastic and replacement. Although a reduced immunotherapy efficacy is reported in patients with LM, tumor-infiltrating lymphocytes (TIL) have not yet been investigated in BCLM. Here, we evaluate the distribution of the HGP and TIL in BCLM, and their association with clinicopathological variables and survival. We collect samples from surgically resected BCLM (n = 133 patients, 568 H&amp;E sections) and post-mortem derived BCLM (n = 23 patients, 97 H&amp;E sections). HGP is assessed as the proportion of tumor liver interface and categorized as pure-replacement (‘pure r-HGP’) or any-desmoplastic (‘any d-HGP’). We score the TIL according to LM-specific guidelines. Associations with progression-free (PFS) and overall survival (OS) are assessed using Cox regressions. We observe a higher prevalence of ‘any d-HGP’ (56%) in the surgical samples and a higher prevalence of ‘pure r-HGP’ (83%) in the post-mortem samples. In the surgical cohort, no evidence of the association between HGP and clinicopathological characteristics is observed except with the laterality of the primary tumor (p value = 0.049) and the systemic preoperative treatment before liver surgery (p value =.039). TIL is less prevalent in ‘pure r-HGP’ as compared to ‘any d-HGP’ (p value = 0.001). ‘Pure r-HGP’ predicts worse PFS (HR: 2.65; CI: (1.45–4.82); p value = 0.001) and OS (HR: 3.10; CI: (1.29–7.46); p value = 0.011) in the multivariable analyses. To conclude, we demonstrate that BCLM with a ‘pure r-HGP’ is associated with less TIL and with the worse outcome when compared with BCLM with ‘any d-HGP’. These findings suggest that HGP could be considered to refine treatment approaches.</p
    corecore