2 research outputs found

    Ultrarapid Detection of Pathogenic Bacteria Using a 3D Immunomagnetic Flow Assay

    No full text
    We developed a novel 3D immunomagnetic flow assay for the rapid detection of pathogenic bacteria in a large-volume food sample. Antibody-functionalized magnetic nanoparticle clusters (AbMNCs) were magnetically immobilized on the surfaces of a 3D-printed cylindrical microchannel. The injection of a Salmonella-spiked sample solution into the microchannel produced instant binding between the AbMNCs and the Salmonella bacteria due to their efficient collisions. Nearly perfect capture of the AbMNCs and AbMNCs-Salmonella complexes was achieved under a high flow rate by stacking permanent magnets with spacers inside the cylindrical separator to maximize the magnetic force. The concentration of the bacteria in solution was determined using ATP luminescence measurements. The detection limit was better than 10 cfu/mL, and the overall assay time, including the binding, rinsing, and detection steps for a 10 mL sample took less than 3 min. To our knowledge, the 3D immunomagnetic flow assay described here provides the fastest high-sensitivity, high-capacity method for the detection of pathogenic bacteria

    Precise Expression Profiling by Stuffer-Free Multiplex Ligation-Dependent Probe Amplification

    No full text
    In systems biological studies, precise expression profiling of functionally important gene sets is crucial. Real-time polymerase chain reaction is generally used for this purpose. Despite its widespread acceptance, however, this method is not suitable for multiplex analysis, resulting in an inefficient assay process. One alternative technology in the spotlight is multiplex ligation-dependent probe amplification (MLPA). But MLPA depends on length-based discrimination of amplified products, which complicates probe design and compromises analysis results. Here, we devised a variation of MLPA that utilizes conformation-sensitive capillary electrophoresis, and demonstrated the simplicity of the probe-design process and improved precision of the assay in analyses of 33 <i>Escherichia coli</i> metabolic genes and 16 <i>Caenorhabditis elegans</i> longevity-related genes. The results showed that relative expression could be quantitatively measured over a relevant dynamic range by using similar-sized probes. Importantly, the improved precision compared to conventional MLPA promises a wider application of this method for various biological systems
    corecore