5 research outputs found

    Intravenous indocyanine green dye is insufficient for robust immune cell labelling in the human retina

    Get PDF
    It is not currently possible to reliably visualise and track immune cells in the human central nervous system or eye. Previous work demonstrated that indocyanine green (ICG) dye could label immune cells and be imaged after a delay during disease in the mouse retina. We report a pilot study investigating if ICG can similarly label immune cells within the human retina. Twelve adult participants receiving ICG angiography as part of routine standard of care were recruited. Baseline retinal images were obtained prior to ICG administration then repeated over a period ranging from 2 hours to 9 days. Matched peripheral blood samples were obtained to examine systemic immune cell labelling and activation from ICG by flow cytometry with human macrophage cultures as positive controls. Differences between the delayed near infrared ICG imaging and 488 nm autofluorescence was observed across pathologies, likely arising from the retinal pigment epithelium (RPE). Only one subject demonstrated ICG signal on peripheral blood myeloid cells and only three distinct cell-sized signals appeared over time within the retina of three participants. No significant increase in immune cell activation markers were detected after ICG administration. ICG accumulated in the endosomes of macrophage cultures and was detectable above a minimum concentration, suggesting cell labelling is possible. ICG can label RPE and may be used as an additional biomarker for RPE health across a range of retinal disorders. Standard clinical doses of intravenous ICG do not lead to robust immune cell labelling in human blood or retina and further optimisation in dose and route are required

    Polysilicon RTCVD Process Optimization for Environmentally- Conscious Manufacturing

    No full text
    In the semiconductor manufacturing industry, optimization of advanced equipment and process designs must include both manufacturing metrics (such as cycle time, consumables cost, and product quality) and environmental consequences (such as reactant utilization and by-product emission). We have investigated the optimization of rapid thermal chemical vapor deposition (RTCVD) of polysilicon from SiH4 as a function of process parameters using a physically-based dynamic simulation approach. The simulator captures essential time-dependent behaviors of gas flow, heat transfer, reaction chemistry, and sensor and control systems, and is validated by our experimental data. Significant improvements in SiH4 utilization (up to 7 x) and process cycle time (up to 3 x) can be achieved by changes in (i) timing for initiating wafer heating relative to starting process gas flow; (ii) process temperature (650 - 750oC ) ; and (iii) gas flow rate (100 - 1000 sccm). Enhanced gas utilization efficiency and reduced process cycle time provide benefits for both environmental considerations and manufacturing productivity (throughput). Dynamic simulation proves to be a versatile and powerful technique for identifying optimal process parameters and for assessing tradeoffs between various manufacturing and environmental metrics

    Integrated Dynamic Simulation of Rapid Thermal Chemical Vapor Deposition of Polysilicon

    No full text
    A physically-based dynamic simulator has been constructed to investigate the time-dependent behavior of equipment process, sensor, and control system for rapid thermal chemical vapor deposition (RTCVD) of polysilicon from SiH4. The simulator captures the essential physics and chemistry of mass transport, heat transfer, and chemical kinetics of the RTCVD process as embodied in equipment. In order to complete the system-level description, reduced-order models are also employed to represent processes involving high complexity of physics. Integration of individual simulator elements for equipment, process, sensors, and control systems enables the evaluation of not only the deposition rate and film thickness, but also of a broad range of dynamic system properties such as equipment performance, gas flow conditions, wafer temperature variation, wafer optical properties (absorptivity/emissivity), gas composition in reactor, total process cycle time, consumables volume, and reactant utilization. This makes the simulator directly applicable to the optimization of process recipe and equipment design, to process control strategy, and to fault classification. This case study of polysilicon RTCVD demonstrates (1) that integrated dynamic simulation is a versatile tool for representing system-level dynamics, and (2) that such representation is pivotal in successful application of modeling and simulation for manufacturing optimization and control

    Data in support of in vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration

    No full text
    In the present data article we report the in vitro and in vivo biocompatibility of fabricated nerve conduits described in Das et al. [1]. Green synthesised gold nanoparticles (GNPs) were evaluated for their cytotoxicity in rat Schwann cells (SCTM41). We also describe herein the adhesion and proliferation of Schwann cells over the nanofibrous scaffolds. Methods describing surgical implantation of conduits in a rat sciatic nerve injury model, confirming its accurate implantation as well as the porosity and swelling tendency of the nerve conduits are illustrated in the various figures and graphs

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundFuture trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050.MethodsUsing forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline.FindingsIn the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]).InterpretationGlobally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions.FundingBill & Melinda Gates Foundation.</p
    corecore