42 research outputs found

    Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes

    Full text link
    During the last half decade, convolutional neural networks (CNNs) have triumphed over semantic segmentation, which is one of the core tasks in many applications such as autonomous driving. However, to train CNNs requires a considerable amount of data, which is difficult to collect and laborious to annotate. Recent advances in computer graphics make it possible to train CNNs on photo-realistic synthetic imagery with computer-generated annotations. Despite this, the domain mismatch between the real images and the synthetic data cripples the models' performance. Hence, we propose a curriculum-style learning approach to minimize the domain gap in urban scenery semantic segmentation. The curriculum domain adaptation solves easy tasks first to infer necessary properties about the target domain; in particular, the first task is to learn global label distributions over images and local distributions over landmark superpixels. These are easy to estimate because images of urban scenes have strong idiosyncrasies (e.g., the size and spatial relations of buildings, streets, cars, etc.). We then train a segmentation network while regularizing its predictions in the target domain to follow those inferred properties. In experiments, our method outperforms the baselines on two datasets and two backbone networks. We also report extensive ablation studies about our approach.Comment: This is the extended version of the ICCV 2017 paper "Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes" with additional GTA experimen

    Improved Dropout for Shallow and Deep Learning

    Full text link
    Dropout has been witnessed with great success in training deep neural networks by independently zeroing out the outputs of neurons at random. It has also received a surge of interest for shallow learning, e.g., logistic regression. However, the independent sampling for dropout could be suboptimal for the sake of convergence. In this paper, we propose to use multinomial sampling for dropout, i.e., sampling features or neurons according to a multinomial distribution with different probabilities for different features/neurons. To exhibit the optimal dropout probabilities, we analyze the shallow learning with multinomial dropout and establish the risk bound for stochastic optimization. By minimizing a sampling dependent factor in the risk bound, we obtain a distribution-dependent dropout with sampling probabilities dependent on the second order statistics of the data distribution. To tackle the issue of evolving distribution of neurons in deep learning, we propose an efficient adaptive dropout (named \textbf{evolutional dropout}) that computes the sampling probabilities on-the-fly from a mini-batch of examples. Empirical studies on several benchmark datasets demonstrate that the proposed dropouts achieve not only much faster convergence and but also a smaller testing error than the standard dropout. For example, on the CIFAR-100 data, the evolutional dropout achieves relative improvements over 10\% on the prediction performance and over 50\% on the convergence speed compared to the standard dropout.Comment: In NIPS 201

    PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation

    Full text link
    The need for fine-grained perception in autonomous driving systems has resulted in recently increased research on online semantic segmentation of single-scan LiDAR. Despite the emerging datasets and technological advancements, it remains challenging due to three reasons: (1) the need for near-real-time latency with limited hardware; (2) uneven or even long-tailed distribution of LiDAR points across space; and (3) an increasing number of extremely fine-grained semantic classes. In an attempt to jointly tackle all the aforementioned challenges, we propose a new LiDAR-specific, nearest-neighbor-free segmentation algorithm - PolarNet. Instead of using common spherical or bird's-eye-view projection, our polar bird's-eye-view representation balances the points across grid cells in a polar coordinate system, indirectly aligning a segmentation network's attention with the long-tailed distribution of the points along the radial axis. We find that our encoding scheme greatly increases the mIoU in three drastically different segmentation datasets of real urban LiDAR single scans while retaining near real-time throughput.Comment: Accepted by CVPR 2020; Code at https://github.com/edwardzhou130/PolarSe

    Video Timeline Modeling For News Story Understanding

    Full text link
    In this paper, we present a novel problem, namely video timeline modeling. Our objective is to create a video-associated timeline from a set of videos related to a specific topic, thereby facilitating the content and structure understanding of the story being told. This problem has significant potential in various real-world applications, such as news story summarization. To bootstrap research in this area, we curate a realistic benchmark dataset, YouTube-News-Timeline, consisting of over 1212k timelines and 300300k YouTube news videos. Additionally, we propose a set of quantitative metrics as the protocol to comprehensively evaluate and compare methodologies. With such a testbed, we further develop and benchmark exploratory deep learning approaches to tackle this problem. We anticipate that this exploratory work will pave the way for further research in video timeline modeling. The assets are available via https://github.com/google-research/google-research/tree/master/video_timeline_modeling.Comment: Accepted as a spotlight by NeurIPS 2023, Track on Datasets and Benchmark

    Unified Visual Relationship Detection with Vision and Language Models

    Full text link
    This work focuses on training a single visual relationship detector predicting over the union of label spaces from multiple datasets. Merging labels spanning different datasets could be challenging due to inconsistent taxonomies. The issue is exacerbated in visual relationship detection when second-order visual semantics are introduced between pairs of objects. To address this challenge, we propose UniVRD, a novel bottom-up method for Unified Visual Relationship Detection by leveraging vision and language models (VLMs). VLMs provide well-aligned image and text embeddings, where similar relationships are optimized to be close to each other for semantic unification. Our bottom-up design enables the model to enjoy the benefit of training with both object detection and visual relationship datasets. Empirical results on both human-object interaction detection and scene-graph generation demonstrate the competitive performance of our model. UniVRD achieves 38.07 mAP on HICO-DET, outperforming the current best bottom-up HOI detector by 14.26 mAP. More importantly, we show that our unified detector performs as well as dataset-specific models in mAP, and achieves further improvements when we scale up the model. Our code will be made publicly available on GitHub.Comment: Accepted to ICCV 2023. Code is available at https://github.com/google-research/scenic/tree/main/scenic/projects/univr

    Spatiotemporally Discriminative Video-Language Pre-Training with Text Grounding

    Full text link
    Most of existing video-language pre-training methods focus on instance-level alignment between video clips and captions via global contrastive learning but neglect rich fine-grained local information, which is of importance to downstream tasks requiring temporal localization and semantic reasoning. In this work, we propose a simple yet effective video-language pre-training framework, namely G-ViLM, to learn discriminative spatiotemporal features. Two novel designs involving spatiotemporal grounding and temporal grouping promote learning local region-noun alignment and temporal-aware features simultaneously. Specifically, spatiotemporal grounding aggregates semantically similar video tokens and aligns them with noun phrases extracted from the caption to promote local region-noun correspondences. Moreover, temporal grouping leverages cut-and-paste to manually create temporal scene changes and then learns distinguishable features from different scenes. Comprehensive evaluations demonstrate that G-ViLM performs favorably against existing approaches on four representative downstream tasks, covering text-video retrieval, video question answering, video action recognition and temporal action localization. G-ViLM performs competitively on all evaluated tasks and in particular achieves R@10 of 65.1 on zero-shot MSR-VTT retrieval, over 9% higher than the state-of-the-art method

    Taming Encoder for Zero Fine-tuning Image Customization with Text-to-Image Diffusion Models

    Full text link
    This paper proposes a method for generating images of customized objects specified by users. The method is based on a general framework that bypasses the lengthy optimization required by previous approaches, which often employ a per-object optimization paradigm. Our framework adopts an encoder to capture high-level identifiable semantics of objects, producing an object-specific embedding with only a single feed-forward pass. The acquired object embedding is then passed to a text-to-image synthesis model for subsequent generation. To effectively blend a object-aware embedding space into a well developed text-to-image model under the same generation context, we investigate different network designs and training strategies, and propose a simple yet effective regularized joint training scheme with an object identity preservation loss. Additionally, we propose a caption generation scheme that become a critical piece in fostering object specific embedding faithfully reflected into the generation process, while keeping control and editing abilities. Once trained, the network is able to produce diverse content and styles, conditioned on both texts and objects. We demonstrate through experiments that our proposed method is able to synthesize images with compelling output quality, appearance diversity, and object fidelity, without the need of test-time optimization. Systematic studies are also conducted to analyze our models, providing insights for future work

    VideoGLUE: Video General Understanding Evaluation of Foundation Models

    Full text link
    We evaluate existing foundation models video understanding capabilities using a carefully designed experiment protocol consisting of three hallmark tasks (action recognition, temporal localization, and spatiotemporal localization), eight datasets well received by the community, and four adaptation methods tailoring a foundation model (FM) for a downstream task. Moreover, we propose a scalar VideoGLUE score (VGS) to measure an FMs efficacy and efficiency when adapting to general video understanding tasks. Our main findings are as follows. First, task-specialized models significantly outperform the six FMs studied in this work, in sharp contrast to what FMs have achieved in natural language and image understanding. Second,video-native FMs, whose pretraining data contains the video modality, are generally better than image-native FMs in classifying motion-rich videos, localizing actions in time, and understanding a video of more than one action. Third, the video-native FMs can perform well on video tasks under light adaptations to downstream tasks(e.g., freezing the FM backbones), while image-native FMs win in full end-to-end finetuning. The first two observations reveal the need and tremendous opportunities to conduct research on video-focused FMs, and the last confirms that both tasks and adaptation methods matter when it comes to the evaluation of FMs
    corecore