86 research outputs found

    Are Sparse Neural Networks Better Hard Sample Learners?

    Get PDF
    While deep learning has demonstrated impressive progress, it remains a daunting challenge to learn from hard samples as these samples are usually noisy and intricate. These hard samples play a crucial role in the optimal performance of deep neural networks. Most research on Sparse Neural Networks (SNNs) has focused on standard training data, leaving gaps in understanding their effectiveness on complex and challenging data. This paper's extensive investigation across scenarios reveals that most SNNs trained on challenging samples can often match or surpass dense models in accuracy at certain sparsity levels, especially with limited data. We observe that layer-wise density ratios tend to play an important role in SNN performance, particularly for methods that train from scratch without pre-trained initialization. These insights enhance our understanding of SNNs' behavior and potential for efficient learning approaches in data-centric AI

    Dynamic Sparse Network for Time Series Classification:Learning What to "see''

    Get PDF
    The receptive field (RF), which determines the region of time series to be ``seen'' and used, is critical to improve the performance for time series classification (TSC). However, the variation of signal scales across and within time series data, makes it challenging to decide on proper RF sizes for TSC. In this paper, we propose a dynamic sparse network (DSN) with sparse connections for TSC, which can learn to cover various RF without cumbersome hyper-parameters tuning. The kernels in each sparse layer are sparse and can be explored under the constraint regions by dynamic sparse training, which makes it possible to reduce the resource cost. The experimental results show that the proposed DSN model can achieve state-of-art performance on both univariate and multivariate TSC datasets with less than 50\% computational cost compared with recent baseline methods, opening the path towards more accurate resource-aware methods for time series analyses. Our code is publicly available at: https://github.com/QiaoXiao7282/DSN

    Are Sparse Neural Networks Better Hard Sample Learners?

    Get PDF
    While deep learning has demonstrated impressive progress, it remains a daunting challenge to learn from hard samples as these samples are usually noisy and intricate. These hard samples play a crucial role in the optimal performance of deep neural networks. Most research on Sparse Neural Networks (SNNs) has focused on standard training data, leaving gaps in understanding their effectiveness on complex and challenging data. This paper's extensive investigation across scenarios reveals that most SNNs trained on challenging samples can often match or surpass dense models in accuracy at certain sparsity levels, especially with limited data. We observe that layer-wise density ratios tend to play an important role in SNN performance, particularly for methods that train from scratch without pre-trained initialization. These insights enhance our understanding of SNNs' behavior and potential for efficient learning approaches in data-centric AI

    Are Sparse Neural Networks Better Hard Sample Learners?

    Get PDF
    While deep learning has demonstrated impressive progress, it remains a daunting challenge to learn from hard samples as these samples are usually noisy and intricate. These hard samples play a crucial role in the optimal performance of deep neural networks. Most research on Sparse Neural Networks (SNNs) has focused on standard training data, leaving gaps in understanding their effectiveness on complex and challenging data. This paper's extensive investigation across scenarios reveals that most SNNs trained on challenging samples can often match or surpass dense models in accuracy at certain sparsity levels, especially with limited data. We observe that layer-wise density ratios tend to play an important role in SNN performance, particularly for methods that train from scratch without pre-trained initialization. These insights enhance our understanding of SNNs' behavior and potential for efficient learning approaches in data-centric AI. Our code is publicly available at: \url{https://github.com/QiaoXiao7282/hard_sample_learners}

    Dynamic Sparse Training versus Dense Training: The Unexpected Winner in Image Corruption Robustness

    Get PDF
    It is generally perceived that Dynamic Sparse Training opens the door to a new era of scalability and efficiency for artificial neural networks at, perhaps, some costs in accuracy performance for the classification task. At the same time, Dense Training is widely accepted as being the "de facto" approach to train artificial neural networks if one would like to maximize their robustness against image corruption. In this paper, we question this general practice. Consequently, \textit{we claim that}, contrary to what is commonly thought, the Dynamic Sparse Training methods can consistently outperform Dense Training in terms of robustness accuracy, particularly if the efficiency aspect is not considered as a main objective (i.e., sparsity levels between 10% and up to 50%), without adding (or even reducing) resource cost. We validate our claim on two types of data, images and videos, using several traditional and modern deep learning architectures for computer vision and three widely studied Dynamic Sparse Training algorithms. Our findings reveal a new yet-unknown benefit of Dynamic Sparse Training and open new possibilities in improving deep learning robustness beyond the current state of the art

    Addressing the Collaboration Dilemma in Low-Data Federated Learning via Transient Sparsity

    Get PDF
    Federated learning (FL) enables collaborative model training across decentralized clients while preserving data privacy, leveraging aggregated updates to build robust global models. However, this training paradigm faces significant challenges due to data heterogeneity and limited local datasets, which often impede effective collaboration. In such scenarios, we identify the Layer-wise Inertia Phenomenon in FL, wherein the middle layers of global model undergo minimal updates after early communication rounds, ultimately limiting the effectiveness of global aggregation. We demonstrate the presence of this phenomenon across a wide range of federated settings, spanning diverse datasets and architectures. To address this issue, we propose LIPS (Layer-wise Inertia Phenomenon with Sparsity), a simple yet effective method that periodically introduces transient sparsity to stimulate meaningful updates and empower global aggregation. Experiments demonstrate that LIPS effectively mitigates layer-wise inertia, enhances aggregation effectiveness, and improves overall performance in various FL scenarios. This work not only deepens the understanding of layer-wise learning dynamics in FL but also paves the way for more effective collaboration strategies in resource-constrained environments. Our code is publicly available at: https://github.com/QiaoXiao7282/LIPS

    Competitive intra- and extracellular nutrient sensing by the transporter homologue Ssy1p

    Get PDF
    Recent studies of Saccharomyces cerevisiae revealed sensors that detect extracellular amino acids (Ssy1p) or glucose (Snf3p and Rgt2p) and are evolutionarily related to the transporters of these nutrients. An intriguing question is whether the evolutionary transformation of transporters into nontransporting sensors reflects a homeostatic capability of transporter-like sensors that could not be easily attained by other types of sensors. We previously found SSY1 mutants with an increased basal level of signaling and increased apparent affinity to sensed extracellular amino acids. On this basis, we propose and test a general model for transporter- like sensors in which occupation of a single, central ligand binding site increases the activation energy needed for the conformational shift between an outward-facing, signaling conformation and an inward-facing, nonsignaling conformation. As predicted, intracellular leucine accumulation competitively inhibits sensing of extracellular amino acids. Thus, a single sensor allows the cell to respond to changes in nutrient availability through detection of the relative concentrations of intra- and extracellular ligand
    corecore