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Abstract. Portfolio selection is a fundamental task in finance and it is
to seek the best allocation of wealth among a basket of assets. Nowadays,
Online portfolio selection has received increasing attention from both AI
and machine learning communities. Mean reversion is an essential prop-
erty of stock performance. Hence, most state-of-the-art online portfolio
strategies have been built based on this. Though they succeed in spe-
cific datasets, most of the existing mean reversion strategies applied the
same weights on samples in multiple periods and considered each of the
assets separately, ignoring the data noise from short-lived events, trend
changing in the time series data, and the dependence of multi-assets. To
overcome these limitations, in this paper, we exploit the reversion phe-
nomenon with multivariate robust estimates and propose a novel online
portfolio selection strategy named “Weighted Multivariate Mean Rever-
sion” (WMMR) (Code is available at: https://github.com/boqian333/
WMMR).. Empirical studies on various datasets show that WMMR has
the ability to overcome the limitations of existing mean reversion algo-
rithms and achieve superior results.

Keywords: portfolio selection · online learning · multivariate robust
estimates

1 Introduction

Portfolio selection, which has been explored in both finance and quantitative
fields, is concerned with determining a portfolio for allocating the wealth among
a set of assets to achieve some financial objectives such as maximizing cumula-
tive wealth or risk-adjusted return, in the long run. There are two main math-
ematical theories for this problem: the mean-variance theory [22] and the Kelly
investment [17]. Mean-variance theory proposed by Markowitz trades off between
the expected return (mean) and risk (variance) of a portfolio in a single-period
framework. Contrarily, the Kelly investment aims to maximize the expected log
return in a multi-period setting. Online portfolio selection (PS), which follows
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the Kelly investment and investigates the sequential portfolio selection strate-
gies, is attracting increasing interest from AI and machine learning communities.
Based on the Kelly investment model, some state-of-the-art online PS strategies
[10] assume that current best-performing stocks would also perform well in the
next trading period. However, empirical evidence indicates that such assump-
tions may often be violated especially in the short term. This observation of an
asset’s price tends to converge to the average price over time, leading to strate-
gies of buying poor-performing stocks and selling those with good performance.
This trading principle is known as the “mean reversion” principle.

In recent years, by exploiting the multi-period mean reversion principle, sev-
eral online PS strategies [5,13,18] have been proposed and achieved encouraging
results when applied to many datasets. However, the existing studies ignored the
data noise from short-lived events, trend changes in the time series data, and the
dependence of multi-assets [18,21], while these are important properties of stock
movements. To overcome these drawbacks, different methods have been proposed
[26]. For instance, a new PS strategy has been proposed, which more accurately
estimates parameters via subset resampling. This approach is particularly use-
ful when the number of assets is large. An ensemble learning method has also
been proposed for Kelly’s growth optimal portfolio to mitigate estimation errors
[24]. Additionally, [28] introduced a novel Relation-aware Transformer (RAT)
method to simultaneously model complex sequential patterns and varying asset
correlations for PS.

In this paper, we propose a multi-period online PS strategy named “Weighted
Multivariate Mean Reversion” (WMMR) without requiring subset resampling
demanding thousands of loops or model training requiring sufficient data. The
basic idea of WMMR is to update the next price prediction via robust multi-
variate estimates with exponential decay. By capturing the correlation between
multiple assets, robust multivariate estimates could reduce or remove the effect
of outlying data points, which are produced by the short-lived events in the finan-
cial market and may lead to incorrect forecasts or predictions. We determine the
portfolio selection strategies via online learning techniques. The experimental
results show that WMMR can achieve greater profits than several existing algo-
rithms. Moreover, it is robust to different parameter values and its performance
is consistently well when considering reasonable transaction costs.

2 Problem Setting

Let us consider a financial market with m assets for n periods. On the tth period,
the assets’ prices are represented by a close price vector pt ∈ R

m
+ and each

element pt,i represents the close price of asset i. The changes of asset prices for
n trading periods are represented by a sequence of non-negative, non-zero price
relative vectors x1, . . . ,xn ∈ R

m
+ . Let us use xn = {x1, . . . ,xn} to denote such

a sequence of price relative vectors for n periods and xt,i = pt,i

pt−1,i
. Thus, an

investment in asset i on the tth period increases by a factor of xt,i.
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At the beginning of the tth period, we diversify our capital among the m
assets specified by a portfolio vector bt = (bt,1, . . . , bt,m), where bt,i represents
the proportion of wealth invested in asset i. Typically, we assume the portfolio
is self-financed and no short selling is allowed, which means each entry of a
portfolio is non-negative and adds up to one, that is, bt ∈ Δm, where Δm =
{bt : bt ∈ R

m
+ ,

∑m
i=1 bt,i = 1}. The investment procedure is represented by

a portfolio strategy, that is, b1 = 1
m1 and following sequence of mappings f :

Rm(t−1)
+ → Δm, t = 2, 3, . . . , where bt = f(x1, . . . ,xt−1) is the tth portfolio given

past market sequence xt−1 = {x1, . . . ,xt−1}. Let us denote bn = {b1, . . . ,bn}
as the portfolio strategy for n trading period.

On the tth trading period, an investment according to portfolio bt results in a
portfolio daily return st, that is, the wealth increases by a factor of st = bT

t xt =∑m
i=1 btixti. Since we reinvest and adopt price relative, the portfolio wealth would

grow multiplicatively. Thus, after n trading periods, the investment according to
a portfolio strategy bn results in portfolio cumulative wealth Sn, which increases
the initial wealth by a factor of

∏n
t=1 bT

t xt, that is,

Sn = S0

n∏

t=1

bT
t xt, (1)

where S0 denotes the initial wealth and is set to $1 for convenience.
Finally, let us formulate the online portfolio selection problem as a sequential

decision problem. In this task, the portfolio manager is a decision maker whose
goal is to make a portfolio strategy bn on financial markets to maximize the
portfolio cumulative wealth Sn. He computes the portfolios sequentially. On each
trading period t, the portfolio manager has access to the sequences of previous
price relative vectors xt−1 = {x1, . . . ,xt−1}, and previous sequences of portfolio
vectors bt−1 = {b1, . . . ,bt−1}. Based on historical information, the portfolio
manager computes a new portfolio vector bt for the next price relative vector
xt, where the decision criterion varies among different managers. The resulting
portfolio bt is scored based on the portfolio period return of St. The procedure
repeats until the end of trading periods and the portfolio strategy is finally scored
by the cumulative wealth Sn.

3 Related Work and Motivation

3.1 Related Work

Following the principle of the Kelly investment [17], many kinds of portfolio
selection methods have been proposed. Online learning portfolio selection max-
imizes the expected return with sequential decision-making. The most common
and well-known benchmark is the Buy-And-Hold (BAH) strategy, that is, one
invests his/her wealth in the market with an initial portfolio and holds it within
his/her investment periods. The BAH strategy with a uniform initial portfolio
b1 = (1/m, 1/m, . . . , 1/m)T is called uniform BAH strategy, which is adopted
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as market strategy producing the market index in our study. Contrary to the
static nature of the BAH strategy, active trading strategies usually change port-
folios regularly during trading periods. A classical active strategy is Constant
Rebalanced Portfolios (CRP) [6], which rebalances a fixed portfolio every trad-
ing period. The Best CRP (BCRP) is the best CRP strategy over the entire
trading period, which is only a high-sight strategy.

Several portfolio strategies assume that past well-performing securities would
still perform well in the future. These strategies are called momentum strategies,
which approximate the expected logarithmic cumulative return of BCRP. The
portfolio in Universal portfolios (UP) [5] is the historical performance weighted
average of all possible CRP experts. The Semi-Universal Portfolio(SUP) strate-
gies with transaction cost [14] consider Cover’s moving target portfolio with
occasional rebalancing. Exponential Gradient (EG) [12] is based on multiplica-
tive updates.

Empirical evidence indicates that opposite trends may often happen in the
financial market, which is a common and famous principle called mean reversion.
Based on the idea of mean reversion, [3] proposed the Anticorrelation (Anticor)
strategy. It calculates a cross-correlation matrix between two specific market win-
dows and transfers the wealth from winning assets to losing assets, and adjusts
the corresponding amounts based on the cross-correlation matrix. [21] proposed
the Passive Aggressive Mean Reversion (PAMR) strategy, which only considers
the single periodical mean reversion property. [9] proposed the Passive Aggressive
Combined Strategy (PACS), which combines price reversion and momentum via
a multipiece-wise loss function. [18] proposed the Online Moving Average Rever-
sion (OLMAR) strategy, which exploits mean reversion’s multi-period nature via
moving average prediction. [13] proposed the Robust Median Reversion (RMR)
strategy which exploits the reversion phenomenon by robust L1-median estima-
tor. All in all, mean reversion is crucial for designing online portfolio selection
strategies.

3.2 Motivation

The existing moving average reversion strategies, i.e. OLMAR [18] and RMR
[13], exploits the mean reversion in the following ways. OLMAR assumes that
the stock price of (t + 1)th period will revert to the moving average (mean) of
the prices in the previous periods with a w-window, that is, the update for
prediction becomes p̂t+1 = 1

w

∑i=t
i=t−w+1 pi. Considering the noises and outliers

in real market data, RMR exploits the multi-period reversion property via the
robust median reversion, that is,

p̂t+1 = arg min
μ

t−w+1∑

i=t

‖pt − μ‖ , (2)

where ‖ · ‖ denotes the Euclidean norm. The robust median is a L1-median in
statistics [27], which is of less sensitivity to the outliers and noisy data compared
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to the mean. Empirical results of RMR on various datasets are significantly
better than OLMAR, which inspires us to explore the robust estimates [1,15,16]
in online portfolio selection.

We assume that the stock prices pt satisfy pt = μt + σt � ut, where μt =
(μt,1, ..., μt,m) ∈ R

m and ut = (ut,1, ..., ut,m) ∈ R
m represent the real price

behind and the noise contaminating the real price respectively. It is noticed that
� represents the element-wise multiplication. Let ut,1, ..., ut,m for t = 1, ..., n are
i.i.d with the density f . σt = (σt,1, ..., σt,m) ∈ R

m
+ is the unknown parameter to

measure the contamination scale on the corresponding asset. Thus, the density
of pt can be defined as 1

σt
f

(
pt−μt

σt

)
. Note that pt, μt and σt are all vectors

and the above operations are element-wise. The maximum likelihood estimation
(MLE) of μt and σt is:

(μ̂t, σ̂t) = arg max
μt,σt

1
σn

t∏

i=t−w+1

f

(
pi − μt

σt

)

= arg min
μt,σt

{
1
n

t∑

i=t−w+1

ρ

(
pi − μt

σt

)

+ log σt

}

,

(3)

where ρ(.) = − log f(.), since f(.) is everywhere positive and the logarithm
is an increasing function. If ρ(.) is differentiable and ρ′′(0) exists, first order
optimization for (3) yields:

⎧
⎪⎨

⎪⎩

μ̂t = (
∑t

i=t−w+1 piW1(pi−μ̂t

σ̂t
))/(

∑t
i=t−w+1 W1(pi−μ̂t

σ̂t
)),

σ̂2
t = 1

w

∑t
i=t−w+1 W2

(
pi−μ̂t

σ̂t

)
(pi − μ̂t)

2
,

(4)

where

⎧
⎪⎪⎨

⎪⎪⎩

W1(x) =
{−ρ′(x)/x if x �= 0

−ρ′′(0) if x = 0 ,

W2(x) =
{−ρ′(x)/x if x �= 0

−ρ′′(0)/2 if x = 0 .

We use μ̂t as the updated prediction for pt+1. It’s noted that pi−μ̂t

σ̂t
is the

outlyingness measure adjusting the weights on sample pt+1 in i-th period and
the next estimated stock price as a weighted mean. In general W (x) is a non-
increasing function of |x|, so outlying observations will receive smaller weights.
It is worth noting that W1(x) and W2(x) are equal except when x = 0.

Table 1. Examples of W (di) functions

W (di)

HUBER
{

k/
√

di,
√

di ≤ k
1,

√
di > k

BISQUAR
{

(1 − di

k2 )2,
√

di ≤ k
0,

√
di > k

SHR

⎧
⎨

⎩

1, di ≤ 4
q(di), 4 < di ≤ 9

0 , di > 9
q(d) = −1.944 + 1.728d − 0.312d2 + 0.016d3

In most cases of inter-
est, it is known or assumed
that some form of dependence
between stocks exists, and
hence that considering each of
them separately would entail
a loss of information. In the
univariate case, pi−μ̂t

σ̂t
mea-

sures the univariate outlying-
ness. In the multivariate case,
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the squared Mahalanobis Dis-
tance [7] between the vectors pi and μt with respect to the covariance matrix
Σt is used to measure the multivariate outlyingness, which is defined as
di(pi,μt,Σt) = (pi − μt)T Σ−1

t (pi − μt), that is, the normalized squared dis-
tance between pi and μt. In general, the dependence of multiple assets is taken
into consideration and we derive the updated prediction for the mean and covari-
ance matrix of return by MLE.

Assumption 1 Suppose that: i. The observations pi are the i.i.d samples
from multivariate probability density f(pi,μt,Σt). ii. The probability density
f(pi,μt,Σt) has the form of f(pi,μt,Σt) = 1√

|Σt|
h(di(pi,μt,Σt)), where |Σt|

is the determinant of Σt. iii. ln f is differentiable.

Theorem 1. Under Assumption 1, the updated prediction is given by:
⎧
⎨

⎩

μ̂t =
∑t

i=t−w+1 W (di)pi/
∑t

i=t−w+1 W (di),

Σ̂t = 1
w

∑t
i=t−w+1 W (di) (pi − μ̂t) (pi − μ̂t)

T
,

(5)

where W (di) = (−2 ln h(di))
′ and di(pi, μ̂t, Σ̂t) = (pi−μ̂t)T Σ̂−1

t (pi−μ̂t), which
are different from the univariate case.

Proof. Let pi are the i.i.d sample from f(pi,μt,Σt) = 1√
|Σt|

h(di(pi,μt,Σt)),

for i = t − w + 1, ..., t. The MLE of μt and Σt is

μ̂t, Σ̂t = argmax
μt,Σt

1
|Σt|w/2

t∏

i=t−w+1

h (di (pi,μt,Σt)) . (6)

It is noted that Since h is everywhere positive and the logarithm is an increasing
function, thus, Eq. 6 can be written as

μ̂t, Σ̂t = argmin
μt,Σt

w ln |Σ̂t| +
t∑

i=t−w+1

ρ (di) , (7)

where ρ(di) = −2 ln h(di) and di = d
(
pi, μ̂t, Σ̂t

)
= (pi − μt)T Σ−1

t (pi − μt).
Differentiating with respect to μt and Σt yields

t∑

i=t−w+1

W (di) (pi − μ̂t) = 0,
1
w

t∑

i=t−w+1

W (di) (pi − μ̂t) (pi − μ̂t)
T = Σ̂t

with W (di) = ρ′(di). If we knew f(.) exactly, the W (di) would be “optimal”,
but since we only know f(.) approximately, our goal is to find estimators that
are “nearly optimal”. For simplicity, we will consider two cases:

– Multivariate Normal: f(pi,μt,Σt) = exp(− 1
2di)√

|Σ| , then W (di) is a constant.
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– m (the number of stocks) multivariate Student distribution with v degrees:
f(pi,μt,Σt) = exp(− 1

2 (m+v))

(di+v)
√

|Σ| , then W (di) = (m + v)/(di + v). If the value of

v is large, then W (di) is a constant; v is 0, then W (di) = m/di.

In our paper, we use classical functions (Huber [2], Bisquare [11], and the weight-
ing function (we shall use SHR here) employed for time series estimation [23])
in robust regression to approximate the true W (di) under unknown f(.), as in
Table 1. These functions assign smaller weights to outlying observations, and
some may even be removed (except for the Huber function). In a time series of
financial data, there will be trend changes that cannot be ignored even in a short
period. Thus, the exponential decay is adopted in Eq. 5, that is,

⎧
⎨

⎩

μ̂t = (
∑t

i=t−w+1 (1 − α)t−ipiW (di))/(
∑t

i=t−w+1 (1 − α)t−i
W (di)),

Σ̂t = 1
w

∑t
i=t−w+1 W (di) (pi − μ̂t) (pi − μ̂t)

T
,

(8)

where α is the decaying factor. μ̂t is the predicted price vector for the (t + 1)th

period.

4 Multi-variate Robust Mean Reversion

4.1 Formulation

The proposed formulation, WMMR, is to find the optimal portfolio by weighted
multivariate mean reversion and passive-aggressive online learning. The basic
idea is to obtain the estimate of the next price relative xt+1 via robust multi-
variate estimates, and then maximize the expected return bT xt+1 with the hope
that the new portfolio is not far away from the previous one.

Most of W (di) in Table 1 depend on the constant k ∈ R. Here a rescaled di,
i.e., di/S is applied to the W (di), that is,

{
μ̂t = (

∑t
i=t−w+1 (1 − α)t−ipiW (di/S))/(

∑t
i=t−w+1 (1 − α)t−i

W (di/S)),
Σ̂t = 1/w

∑t
i=t−w+1(1 − α)t−iW (di/S) (pi − μ̂t) (pi − μ̂t)

T
,

(9)
where S = MED([dt−w+1, ..., dt]) and di(pi, μ̂t, Σ̂t) = (pi − μ̂t)T Σ̂−1

t (pi − μ̂t).
In this formulation of WMMR, different W (di) and Σ̂t are discussed as follows:

– Case 1: W (di) ≡ 1, Σ̂t is not considered and α ≡ 0.
– Case 2: W (di) = 1√

di
, Σ̂t ≡ I and α ≡ 0.

– Case 3: W (di) is the HUBER weighting function, Σ̂t is computed via Eq. 5
and α is a parameter.

– Case 4: W (di) is the BISQUA weighting function, Σ̂t is computed via Eq. 5
and α is a parameter.

– Case 5: W (di) is the SHR weighting function, Σ̂t is computed via Eq. 5 and
α is a parameter.
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Algorithm 1 . WMMR(pt, pt−1 , . . . , pt−w+1,τ , k, α)
1: Input: Current stock price sequence pt, pt−1 , . . . , pt−w+1; Toleration level τ ;

Iteration maximum K; Decaying factor α.
2: Output: estimated x̂t+1

3: Procedure:
4: Initialize j ← 0, μ̂t ← 1

m
1 and Σ̂t = 1

5: The estimation of next period price: p̂t+1 ← μ̂t

6: while j < K do
7: Calculate the following variables:
8: The multivariate outlyingness: di ← (pi − μ̂t)

T Σ̂−1
t (pi − μ̂t) (i = t-w+1,...,t)

9: The error scale: S ← MED([dt−w+1, ...dt])
10: The weight: Wi ← W (di/S) (i = t-w+1,...,t)
11: The estimation of μ̂t in jth iteration :

μ̂t ←
t∑

i=t−w+1

(1 − α)t−iWipi/
t∑

i=t−w+1

(1 − α)t−iWi

12: The estimation of Σ̂t in jth iteration :

Σ̂t ← 1

w

t∑

i=t−w+1

Wi (pi − μ̂t) (pi − μ̂t)
T

if |μ̂t − p̂t+1| < τ |μ̂t| then break
end if

13: p̂t+1 ← μ̂t

14: end while
15: The price relative vectors in (t + 1)thperiod: x̂t+1 ← p̂t+1/pt

Note that in Case 1, μ̂t = 1
w

∑t
i=t−w+1 pi, which is the moving average mean

used in OLMAR; In Case 2, μ̂t=(
∑t

i=t−w+1
pi√

‖pi−μ̂t‖2

)/(
∑t

i=t−w+1
1√

‖pt−i−μ̂t‖2

),

which is the robust median used in RMR. OLMAR and RMR strategies are sub-
samples of WMMR. In this paper, the effectiveness of Case 3, Case 4, and Case 5
are mainly explored, which are denoted by WMMR-HUBER, WMMR-BIS, and
WMMR-SHR respectively.

4.2 Online Portfolio Selection

bt+1 = arg min
b

1
2

‖b − bt‖2 +
θ

2
‖b‖2 s.t.

{
bT x̂t+1 ≥ ε,
bT 1 = 1 (10)

where x̂t+1 is the price relative estimated via weighted multivariate mean rever-
sion and θ > 0 is the regularization parameter and is manually tuned. The above
formulation attempts to find a portfolio satisfying the condition of bT x̂t+1 ≥ ε
while not far away from the last portfolio. On one side, when the expected return
is larger than a threshold ε, the investment strategy will passively keep the last
portfolio. On another side, when the constraint bT x̂t+1 ≥ ε is not satisfied, the
portfolio will be aggressively updated by forcing expected return is larger than
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the threshold ε. By adding the regularization ‖b‖2 under the constrain bT 1 = 1,
we push the new portfolio move forward to 1

m and prevent the solution from
over-fitted.

Algorithm 2 . Online Portfolio Selection(ε, w, x̂t+1, bt)
1: Input: Reversion threshold: ε > 1; Window size: w; Predicted price relatives :x̂t+1;

Current portfolio: bt.
2: Output: Next portfolio bt+1.
3: Procedure: Calculate the following variables:

4: ηt+1 = max(0,
(1+θ)ε−x̂T

t+1(bt+θ1)

‖x̂t+1−x̄t+11‖2 ))

5: Update the portfolio: b = 1
1+θ

[bt + ηt+1 (x̂t+1 − x̄t+11)] + θ
(1+θ)

1
m

6: Normalize bt: bt+1 = arg min
b∈Δm

‖b − bt+1‖2

Algorithm 3 . Portfolio Selection with WMMR
1: Input: Reversion threshold: ε > 1; Window size: w; Iteration maximum k; Tolera-

tion level τ ; Decaying factor α; Market Sequence Pn.
2: Output: Cumulative wealth after nth periods
3: Procedure:
4: Initialization: Initial portfolio: b1 = 1

m
1; Initial wealth: S0 = 1.

5: for t = w to n do
6: Predict next price relative vector according Algorithm 1:

x̂t+1 ← WMMR(pt, pt−1 , . . . , pt−w+1,τ , k, α).
7: Update the portfolio according Algorithm 2:

bt+1 ← Online Portfolio Selection(ε, w, x̂t+1, bt).
8: Receive stock price: Pt+1.

9: Update cumulative return: St+1 ← St ×
(
bt+1

T pt+1
pt

)
.

10: end for

4.3 Algorithms

From the formulation of WMMR(Eq. 9), the weights W (di/S) depend also on
μ̂t and Σ̂t, hence Eq. 9 is not an explicit expression for μ̂t and Σ̂t. The solu-
tion of weighted multivariate estimation could be calculated through iteration,
and the iteration process is described in Algorithm 1. Once the constraint
‖μt+1 − μt‖1 ≤ τ ‖μt‖1 is satisfied, or the number of iteration is larger than the
threshold k, the iteration is terminated, where τ is a toleration level and k is the
maximum iteration number.

The constrained optimization problem (10) can be solved by the technique
of convex optimization [4]. The solution of (10) without considering the non-
negativity constraint is

bt+1 =
1

1 + θ
[bt + η(x̂t+1 − x̄t+11)] +

θ

(1 + θ)
1
m

, (11)

where η = max(0,
(1+θ)ε−x̂T

t+1(bt+θ1)

‖x̂t+1−x̄t+11‖2 ).



264 B. Wu et al.

Proof. Define the Lagrangian of the problem (10) to be:

L(b, η, λ) =
1
2

‖b − bt‖2 +
1
2
θ ‖b‖2 − η

(
x̂T

t+1b − ε
)

+ λ(1T b − 1). (12)

Setting the partial derivatives of L with respect to the elements of b to zero,
yields:

0 =
∂L
∂b

= ((θ + 1)b − bt) − ηx̂t+1 + λ1. (13)

Multiplying both sides of Eq. 13 with 1T , and 1T b = 1, 1T 1 = m, we can get
λ = − θ

m + η
m1T x̂t+1. Define x̄t+1 = 1T x̂t+1

m as the mean of the price relatives
in the period (t + 1)th. Then, λ can be rewritten as λ = − θ

m + ηx̄t+1, and the
solution for L is

b =
bt

1 + θ
+

θ1
(1 + θ)m

+
η

1 + θ
(x̂t+1 − x̄t+11). (14)

Plugging Eq. 14 to ∂ 1
2‖b−bt‖2

∂η + ∂ θ
2 ‖b‖2

∂η , noting that, 1
m1T (x̂t+1 − x̄t+11) = 0,

yields: Thus,

∂ 1
2 ‖b − bt‖2

∂η
+

∂ θ
2 ‖b‖2
∂η

=
1

(1 + θ)
η‖x̂t+1 − x̄t+11‖2 (15)

Plugging Eq. 14 to ∂η(x̂T
t+1b−ε)

∂η , yields

∂η(x̂T
t+1b − ε)
∂η

= x̂T
t+1(

bt

1 + θ
+

θ1
1 + θ

) − ε +
2

1 + θ
η‖x̂t+1 − x̄t+11‖2 (16)

Plugging the expression of λ and Eq. 14 to ∂λ(1T b−1)
∂η , we get,

∂λ(1T b − 1)
∂η

= 0, (17)

From Eq. 15, Eq. 16 and Eq. 17, we get,

0 =
∂L
∂η

= ε − x̂T
t+1(

bt

1 + θ
+

θ1
1 + θ

) − η

(1 + θ)
‖x̂t+1 − x̄t+11‖2, (18)

then,

η =
(1 + θ)ε − x̂T

t+1(bt + θ1)

‖x̂t+1 − x̄t+11‖2 . (19)

It is noted that η > 0, so

η = max(0,
(1 + θ)ε − x̂T

t+1(bt + θ1)

‖x̂t+1 − x̄t+11‖2 ) (20)

For simplicity, the non-negativity constraint of portfolio b is not considered
in the above formulation. It is possible that the resulting portfolio calculated
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from Eq. 11 is not non-negative. Thus, the projection of the solution to the
simplex domain [8] is necessary, as shown in Algorithm 2. Finally, the online
portfolio selection algorithm based on the Weighted Multivariate Mean Reversion
is described in Algorithm 3. Unlike the regret minimization approaches, the
WMMR strategy takes advantage of the statistical properties (mean reversion)
of the financial market, which is difficult to provide a traditional regret bound. [3]
failed to provide a regret bound for the Anticor strategy, which passively exploits
the mean reversion idea. Although we cannot prove the traditional regret bound,
the proposed algorithms do provide strong empirical evidence, which sequentially
advances the state of the art.

5 Experiments

Table 2. Summary of the four real datasets
in our numerical experiments.

dataset Market Region Time frame Trading days Assets
NYSE(o) Stock US Jul.3rd 1962-Dec.31st 1984 5651 36
NYSE(N) Stock US Jan.1st 1985-Jun.30th 2010 6431 23
DJIA Stock US Jan.14th 2001-Jan.14th 2003 507 30
MSCI Index Global Apr.1st 2006-Mar.31st 2010 1043 24

The effectiveness of the proposed port-
folio strategies is tested on four pub-
lic datasets from real markets, whose
information is summarized in Table 2.
NYSE(O), which is a benchmark
dataset pioneered by [5]. Considering
amalgamation and bankruptcy, the second dataset NYSE(N) consists of 23
stocks from dataset NYSE(O) including 36 stocks and was collected by Li et
al. [19]. The third dataset is DJIA collected by Borodin et al. [3]. MSCI is a
dataset that is collected from global equity indices that constitute the MSCI
World Index. Several research studies and the state-of-art model RMR also uti-
lize these four datasets in their experiments.

Cumulative wealth is the most common and significant metric and is used
to measure investment performance in this paper. To be consistent comparison
with other different methods, we implement the proposed WMMR-HUBER (with
k = 0.95), WMMR-BIS (with k = 3.85), WMMR-SHR and set the parameters
empirically without tuning for each dataset separately as follows: w = 5, ε = 100,
α = 0.85 and θ = 0.1. It is worth noting that choices of parameters are not always
optimal for WMMR, though these parameters can be tuned to obtain optimal
results. The sensitivities of these parameters will be evaluated in the next section.
It is necessary to note that the parameters in Algorithm 1, iteration maximum
K, are fixed to 50.

5.1 Cumulative Wealth

The cumulative wealth achieved by various methods is summarized in Table 3.
On dataset NYSE(O), NYSE(N) and DJIA, WMMR (WMMR-HUBER,
WMMR-BISQUARE, and WMMR-SHR) outperform the state-of-the-art. On
dataset MSCI, WMMR beats the existing algorithm RMR. By tuning different
values of parameter w, ε, α, and θ for the corresponding dataset, we also refer to
the best performance (in hindsight) shown as WMMR(max) in Table 3. Besides,
WMMR(max) is showing the potential of the proposed method by tuning the
optimal parameter.
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Table 3. Cumulative wealth achieved by
various strategies on the four datasets.

Methods NYSE(O) NYSE(N) DJIA MSCI
Market 14.50 18.06 0.76 0.91
Best-stock 54.14 83.51 1.19 1.50
BCRP 250.60 120.32 1.24 1.51
UP 26.68 31.49 0.81 0.92
EG 27.09 31.00 0.81 0.93
ONS 109.91 21.59 1.53 0.86
Bk 1.08E+09 4.64E+03 0.68 2.64
BNN 3.35E+11 6.80E+04 0.88 13.47
CORN 1.48E+13 5.37E+05 0.84 26.19
Anticor 2.41E+08 6.21E+06 2.29 3.22
PAMR 5.14E+15 1.25E+06 0.68 15.23
CWMR 6.49E+15 1.41E+06 0.68 17.28
OLMAR 4.04E+16 2.24E+08 2.05 16.33
RMR 1.64E+17 3.25E+08 2.67 16.76
TCO 1.35E+14 9.15E+06 2.01 9.68
WMMR-HUBER 4.14E+17 4.11E+08 3.14 17.65
WMMR-BIS 4.53E+17 3.75E+08 2.91 17.02
WMMR-SHR 3.0E+17 3.43E+08 3.10 17.42
WMMR(max) 5.83E+17 3.02E+09 3.15 25.82

Finally, Table 4 shows some statis-
tics of WMMR. We only present
the results achieved by WMMR-
HUBER since the effect of WMMR-
BISQUARE and WMMR-SHR, are
quite similar to that of WMMR. From
the results, a small p-value reveals
that WMMR’s excellent performance
is owed to the strategy principle but
not due to luck.

5.2 Computational Time

It is widely known that computational
time is important to certain trading
environments, we evaluate the compu-
tational time on one core of an Intel
Core i5 2.3 GHz processor with 16GB, using Python on MacBook Pro. Experi-
ments show that it takes 57.38s, 101.65s, 526.2s, and 443.3s for DJIA, MSCI,
NYSE(O), and NYSE(N) respectively, which means that the computational time
for each of trading periods is less than 0.1s. The computational time is accept-
able even in the scenario of high-frequency trading, which occurs in fractions of
a second. Such time efficiency supports WMMR’s large-scale real applications.

5.3 Parameter Sensitivity Table 4. Statistical test of our algorithms.

Stat. Attr NYSE(O) NYSE(N) DJIA MSCI
Size 5651 6431 507 1043
MER(WMMR) 0.0078 0.0037 0.0028 0.0030
MER(Market) 0.0005 0.0005 -0.0004 0.0000
t-statistics 15.2249 7.1985 2.2059 3.9214
p-value 0.0000 0.0000 0.0278 0.0000

Firstly, the effect of sensitivity param-
eter w on cumulative wealth is eval-
uated, in Fig. 1. It is obvious that
in most cases, except NYSE(N), the
cumulative wealth decreases with in-
creasing w. Secondly, the effect of sensitivity parameter ε on cumulative wealth
is evaluated. From Fig. 2, The growth of cumulative wealth is sharp as ε increases
and turns flat when ε exceeds a threshold. Finally, the effect of sensitivity param-
eter θ and α on cumulative wealth are evaluated in Fig. 3 and Fig. 4. From the
above observation, it is clear that WMMR is robust for different parameters and
it is convenient to choose satisfying parameters.

Fig. 1. Parameter sensitivity of WMMR w.r.t. w with fixed ε = 100, α = 0.85, θ = 0.1
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Fig. 2. Parameter sensitivity of WMMR w.r.t. ε with fixed w = 5, α = 0.85, θ = 0.1

Fig. 3. Parameter sensitivity of WMMR w.r.t. α with fixed w = 5, ε = 100, θ = 0.1

Fig. 4. 4Parameter sensitivity of WMMR w.r.t. θ with fixed w = 5, ε = 100, α = 0.85

5.4 Risk-Adjusted Returns

The risk in terms of volatility risk and drawdown risk and the risk-adjusted
return in terms of annualized Sharpe ratio are evaluated in the experiment,
taking two benchmarks (Market and BCRP) and two state-of-the-art algorithms
(OLMAR and RMR) for comparison. The result of Risk-Adjusted Returns is
shown in Fig. 5. Though the high return is associated with high risk, WMMR
achieves the best performance in terms of the Sharpe ratio.

5.5 Transaction Cost Scalability

For a real-world application, the transaction cost is an important practical is-
sue for portfolio selection. Ignoring this cost may lead to aggressive trading and
bring biases into the estimation of returns. [25] proposed an approximate dy-
namic programming (ADP) method to tackle the multi-asset portfolio optimiza-
tion problems with proportional transaction costs. [20] proposed a novel online
portfolio selection framework, named Transaction Cost Optimization(TCO) to
trade-off between maximizing expected log return and minimizing transaction
costs. Here, the proportional transaction cost model proposed in [3] is adopted
to compute the cumulative wealth:
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S0

n∏

t=1

[

(bt · xt) ×
(

1 − γ

2
×

∑

i

∣
∣
∣bt,i − b̂t−1,i

∣
∣
∣

)]

,

where, γ is transaction cost rate γ ∈ (0, 0.1) in the experiments, b̂(t−1,i) =
bt−1,ixt−1,i

bT
t−1·xt−1

. The cumulative wealth with transaction cost is plotted in Fig. 6.
From Fig. 6, we can observe that WMMR can withstand reasonable transaction
cost rates, and can beat the two benchmarks in most cases.

Fig. 5. Risk and risk-adjusted performance of various strategies on the four different
datasets. In each diagram, the rightmost bars represent the results achieved by WMMR.

Fig. 6. Scalability of the total wealth achieved by WMMR with respect to transaction
cost rate

6 Conclusion

Based on the robust multivariate estimates and PA online learning, a novel
online portfolio selection strategy named “Weighted Multivariate Mean Rever-
sion” (WMMR) is proposed in this paper. In the exploitation of “Multi-period
Multivariate Average Reversion”, WMMR takes data noise, trend changes, and
the dependence of multi-assets into full consideration. Several cases of weighting
functions with exponential decay are investigated, and the results demonstrate
the effectiveness of WMMR. Moreover, extensive experiments on the real mar-
ket show that the proposed WMMR can achieve satisfying performance with an
acceptable run time.
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