520 research outputs found

    Spin resonance in the superconducting state of Li1−x_{1-x}Fex_{x}ODFe1−y_{1-y}Se observed by neutron spectroscopy

    Full text link
    We have performed inelastic neutron scattering measurements on a powder sample of the superconductor lithium iron selenide hydroxide Li1−x_{1-x}Fex_{x}ODFe1−y_{1-y}Se (x≃0.16,y≃0.02x \simeq 0.16, y \simeq 0.02, Tc=41T_{\rm c} = 41\,K). The spectrum shows an enhanced intensity below TcT_{\rm c} over an energy range 0.64×2Δ<E<2Δ0.64\times2\Delta < E < 2\Delta, where Δ\Delta is the superconducting gap, with maxima at the wave vectors Q1≃1.46Q_1 \simeq 1.46\,\AA−1^{-1} and Q2≃1.97Q_2 \simeq 1.97\,\AA−1^{-1}. The behavior of this feature is consistent with the spin resonance mode found in other unconventional superconductors, and strongly resembles the spin resonance observed in the spectrum of the molecular-intercalated iron selenide, Li0.6_{0.6}(ND2_{2})0.2_{0.2}(ND3_{3})0.8_{0.8}Fe2_{2}Se2_{2}. The signal can be described with a characteristic two-dimensional wave vector (π,0.67π)(\pi, 0.67\pi) in the Brillouin zone of the iron square lattice, consistent with the nesting vector between electron Fermi sheets

    Phonon Dispersion Relations in PrBa2Cu3O6+x (x ~ 0.2)

    Full text link
    We report measurements of the phonon dispersion relations in non-superconducting, oxygen-deficient PrBa2Cu3O6+x (x ~ 0.2) by inelastic neutron scattering. The data are compared with a model of the lattice dynamics based on a common interaction potential. Good agreement is achieved for all but two phonon branches, which are significantly softer than predicted. These modes are found to arise predominantly from motion of the oxygen ions in the CuO2 planes. Analogous modes in YBa2Cu3O6 are well described by the common interaction potential model.Comment: 4 pages, 3 figures. Minor changes following referees' comment

    Spin gaps and magnetic structure of NaxCoO2

    Full text link
    We present two experiments that provide information on spin anisotropy and the magnetic structure of NaxCoO2. First, we report low-energy neutron inelastic scattering measurements of the zone-center magnetic excitations in the magnetically ordered phase of Na0.75CoO2. The energy spectra suggest the existence of two gaps, and are very well fitted by a spin-wave model with both in-plane and out-of-plane anisotropy terms. The gap energies decrease with increasing temperature and both gaps are found to have closed when the temperature exceeds the magnetic ordering temperature T_m~22 K. Secondly, we present neutron diffraction studies of Na0.85CoO2 with a magnetic field applied approximately parallel to the c axis. For fields in excess of ~8T a magnetic Bragg peak was observed at the (0,0,3) position in reciprocal space. We interpret this as a spin-flop transition of the A-type antiferromagnetic structure, and we show that the spin-flop field is consistent with the size of the anisotropy gap.Comment: 9 pages, 7 figure

    Coupled Magnetic Excitations in Single Crystal PrBa2Cu3O6.2

    Full text link
    The dispersion of the low-energy magnetic excitations of the Pr sublattice in PrBa2Cu3O6.2 is determined by inelastic neutron scattering measurements on a single crystal. The dispersion, which shows the effect of interactions with the Cu spin-waves, is well described by a model of the coupled Cu-Pr magnetic system. This enables values for the principal exchange constants to be determined, which suggest that both Pr-Pr and Cu-Pr interactions are important in producing the anomalously high ordering temperature of the Pr sublattice. Measurements of the Cu optic spin wave mode show that the inter-layer Cu-Cu exchange is significantly lower than in YBa2Cu3O6.2.Comment: To be published Phys. Rev. Let

    Ground state magnetic structure of Mn3_3Ge

    Full text link
    We have used spherical neutron polarimetry to investigate the magnetic structure of the Mn spins in the hexagonal semimetal Mn3_3Ge, which exhibits a large intrinsic anomalous Hall effect. Our analysis of the polarimetric data finds a strong preference for a spin structure with E1gE_{1g} symmetry relative to the D6hD_{6h} point group. We show that weak ferromagnetism is an inevitable consequence of the symmetry of the observed magnetic structure, and that sixth order anisotropy is needed to select a unique ground state

    Rights Myopia in Child Welfare

    Get PDF
    For decades, legal scholars have debated the proper balance of parents\u27 rights and children\u27s rights in the child welfare system. This Article argues that the debate mistakenly privileges rights. Neither parents\u27 rights nor children\u27s rights serve families well because, as implemented, a solely rights-based model of child welfare does not protect the interests of parents or children. Additionally, even if well-implemented, the model still would not serve parents or children because it obscures the important role of poverty in child abuse and neglect and fosters conflict rather than collaboration between the state and families. In lieu of a solely rights-based model, this Article proposes a problem-solving model for child welfare and explores one embodiment of such a model, family group conferencing. This Article concludes that a problem-solving model holds significant potential to address many of the profound theoretical and practical shortcomings of the current child welfare system

    Tuning the superconducting and magnetic properties in Fe_ySe_0.25Te_0.75 by varying the Fe-content

    Full text link
    The superconducting and magnetic properties of Fey_{y}Se0.25_{0.25}Te0.75_{0.75} single crystals (0.9≤y≤1.10.9\leq y \leq1.1) were studied by means of x-ray diffraction, SQUID magnetometry, muon spin rotation, and elastic neutron diffraction. The samples with y<1y<1 exhibit coexistence of bulk superconductivity and incommensurate magnetism. The magnetic order remains incommensurate for y≥1y\geq 1, but with increasing Fe content superconductivity is suppressed and the magnetic correlation length increases. The results show that the superconducting and the magnetic properties of the Fey_{y}Se1−x_{1-x}Tex_{x} can be tuned not only by varying the Se/Te ratio but also by changing the Fe content

    Spin anisotropy of the resonance in superconducting FeSe0.5Te0.5

    Full text link
    We have used polarized-neutron inelastic scattering to resolve the spin fluctuations in superconducting FeSe0.5Te0.5 into components parallel and perpendicular to the layers. A spin resonance at an energy of 6.5 meV is observed to develop below T_c in both fluctuation components. The resonance peak is anisotropic, with the in-plane component slightly larger than the out-of-plane component. Away from the resonance peak the magnetic fluctuations are isotropic in the energy range studied. The results are consistent with a dominant singlet pairing state with s^{\pm} symmetry, with a possible minority component of different symmetry.Comment: 5 pages, 4 figure

    Magnetic excitations of Fe_{1+y}Se_xTe_{1-x} in magnetic and superconductive phases

    Full text link
    We have used inelastic neutron scattering and muon-spin rotation to compare the low energy magnetic excitations in single crystals of superconducting Fe1.01Se0.50Te0.50 and non-superconducting Fe1.10Se0.25Te0.75. We confirm the existence of a spin resonance in the superconducting phase of Fe1.01Se0.50Te0.50, at an energy of 7 meV and a wavevector of (1/2,1/2,0). The non-superconducting sample exhibits two incommensurate magnetic excitations at (1/2,1/2,0)\pm(0.18,-0.18,0) which rise steeply in energy, but no resonance is observed at low energies. A strongly dispersive low-energy magnetic excitation is also observed in Fe1.10Se0.25Te0.75 close to the commensurate antiferromagnetic ordering wavevector (1/2-\delta,0,1/2) where \delta \approx 0.03. The magnetic correlations in both samples are found to be quasi-two dimensional in character and persist well above the magnetic (Fe1.10Se0.25Te0.75) and superconducting (Fe1.01Se0.50Te0.50) transition temperatures.Comment: 10 pages, 4 figure

    Coexistence of incommensurate magnetism and superconductivity in Fe_{1+y}Se_xTe_{1-x}

    Get PDF
    We report an investigation into the superconducting and magnetic properties of Fe_{1+y}Se_{x}Te_{1-x} single crystals by magnetic susceptibility, muon spin rotation, and neutron diffraction. We find three regimes of behavior in the phase diagram for 0\leq x\leq 0.5: (i) commensurate magnetic order for x< 0.1, (ii) bulk superconductivity for x≲0.1x\lesssim 0.1, and (iii) a range \sim 0.25\leq x\leq 0.45 in which superconductivity coexists with static incommensurate magnetic order. The results are qualitatively consistent with a two-band mean-field model in which itinerant magnetism and extended s-wave superconductivity are competing order parameters.Comment: 4 pages, 4 figure
    • …
    corecore