5,171 research outputs found

    Vectorial adaptive optics

    Get PDF
    Adaptive optics normally concerns the feedback correction of phase aberrations. Such correction has been of benefit in various optical systems, with applications ranging in scale from astronomical telescopes to super-resolution microscopes. Here we extend this powerful tool into the vectorial domain, encompassing higher-dimensional feedback correction of both polarisation and phase. This technique is termed vectorial adaptive optics (V-AO). We show that V-AO can be implemented using sensor feedback, indirectly using sensorless AO, or in hybrid form combining aspects of both. We validate improvements in both vector field state and the focal quality of an optical system, through correction for commonplace vectorial aberration sources, ranging from objective lenses to biological samples. This technique pushes the boundaries of traditional scalar beam shaping by providing feedback control of extra vectorial degrees of freedom. This paves the way for next generation AO functionality by manipulating the complex vectorial field

    Further education teacher educators’ narratives of their journeys and professional identities

    Get PDF

    Convergence of many-body wavefunction expansions using a plane wave basis: from the homogeneous electron gas to the solid state

    Full text link
    Using the finite simulation-cell homogeneous electron gas (HEG) as a model, we investigate the convergence of the correlation energy to the complete basis set (CBS) limit in methods utilising plane-wave wavefunction expansions. Simple analytic and numerical results from second-order M{\o}ller-Plesset theory (MP2) suggest a 1/M decay of the basis-set incompleteness error where M is the number of plane waves used in the calculation, allowing for straightforward extrapolation to the CBS limit. As we shall show, the choice of basis set truncation when constructing many-electron wavefunctions is far from obvious, and here we propose several alternatives based on the momentum transfer vector, which greatly improve the rate of convergence. This is demonstrated for a variety of wavefunction methods, from MP2 to coupled-cluster doubles theory (CCD) and the random-phase approximation plus second-order screened exchange (RPA+SOSEX). Finite basis-set energies are presented for these methods and compared with exact benchmarks. A transformation can map the orbitals of a general solid state system onto the HEG plane wave basis and thereby allow application of these methods to more realistic physical problems.Comment: 15 pages, 9 figure

    High resolution structural characterisation of laser-induced defect clusters inside diamond

    Get PDF
    Laser writing with ultrashort pulses provides a potential route for the manufacture of three-dimensional wires, waveguides and defects within diamond. We present a transmission electron microscopy (TEM) study of the intrinsic structure of the laser modifications and reveal a complex distribution of defects. Electron energy loss spectroscopy (EELS) indicates that the majority of the irradiated region remains as sp3sp^3 bonded diamond. Electrically-conductive paths are attributed to the formation of multiple nano-scale, sp2sp^2-bonded graphitic wires and a network of strain-relieving micro-cracks

    Four-dimensional light shaping: manipulating ultrafast spatio-temporal foci in space and time

    Full text link
    Spectral dispersion of ultrashort pulses allows simultaneous focusing of light in both space and time creating so-called spatio-temporal foci. Such space-time coupling may be combined with existing holographic techniques to give a further dimension of control when generating focal light fields. It is shown that a phase-only hologram placed in the pupil plane of an objective and illuminated by a spatially chirped ultrashort pulse can be used to generate three dimensional arrays of spatio-temporally focused spots. Exploiting the pulse front tilt generated at focus when applying simultaneous spatial and temporal focusing (SSTF), it is possible to overlap neighbouring foci in time to create a smooth intensity distribution. The resulting light field displays a high level of axial confinement, with experimental demonstrations given through two-photon microscopy and non-linear laser fabrication of glass

    Deflectometry based calibration of a deformable mirror for aberration correction and remote focusing in microscopy

    Get PDF
    Adaptive optics (AO) techniques enhance the capability of optical microscopy through precise control of wavefront modulations to compensate phase aberrations and improves image quality. However, the aberration correction is often limited due to the lack of dynamic range in existing calibration methods, such as interferometry or Shack-Hartmann (SH) wavefront sensors. Here, we use deflectometry (DF) as a calibration method for a deformable mirror (DM) to extend the available range of aberration correction. We characterised the dynamic range and accuracy of the DF-based calibration of DMs depending on the spatial frequency of the test pattern used in DF. We also demonstrated the capability of large magnitude phase control for remote-focusing over a range larger than was possible with SH sensing

    Planar polymer waveguides with a graded-index profile resulting from intermixing of methacrylates in closed microchannels

    Get PDF
    Graded-index waveguides are known to exhibit lower losses and considerably larger bandwidths compared to step-index waveguides. The present work reports on a new concept for realizing such waveguides on a planar substrate by capillary filling microchannels (cladding) with monomer solution (core). A graded-index profile is obtained by intermi xing between the core and cladding material at the microchannel interface. To this end, various ratios of methyl methacrylate (MMA) and octafluoropentyl methacrylate (OFPMA) were evaluated as starting monomers and the results showed that the polymers P50:50 (50:50 MMA:OFPMA) and P0:100 (100% OFPMA) were suitable to be applied as waveguide core and cladding material respectively. Light guiding in the resulting P50:50/P0:100 waveguides was demonstrated and the refractive-index profile was quantified and compared with that of conventional step-index waveguides. The results for both cases were clearly different and a gradual refractive index transition between the core and cladding was found for the newly developed waveguides. Although the concept has been demonstrated in a research environment, it also has potential for upscaling by employing drop-on-demand dispensing of polymer waveguide material in pre-patterned microchannels, for example in a roll-to-roll environment

    Polarization based modulation of splitting ratio in femtosecond laser direct written directional couplers

    Full text link
    This work characterizes a phenomenon in direct laser written directional couplers where the splitting ratio for output light is dependent on the input polarization state. In general, for laser written waveguides, different coupling strengths exist for different polarization states of the input light. If the linear polarization state of the input light is not aligned with one of the symmetry axes of the system, an additional amplitude beating is imposed on the transfer of light in directional couplers of different interaction length. We present results for in-plane and out of plane directional couplers, which are supported by theoretical analysis. These new results provide insights for understanding and controlling polarization properties of directional couplers and larger photonic circuits
    • …
    corecore