814 research outputs found

    Pathways from pilot to demonstration : how can research advance CO2 geological storage deployment?

    Get PDF
    An international workshop was hosted by the British Geological Survey (BGS), supported by the United Kingdom’s Foreign and Commonwealth Office (FCO), from the 1st to the 3rd of March 2016 at the BGS offices in Keyworth, Nottingham, United Kingdom. The workshop objectives were to: Examine how pilot, field laboratory and laboratory projects can inform and advance large-scale CO2 storage and low-carbon geo-energy resources. Reinforce the importance of advancing CCS through practical experience at varied relevant scales: pilots/field labs (testing concepts) and demonstrations (deploy technologies and identify new technical questions for pilots to examine) Strengthening international links between field lab, pilot, demonstration and large scale project operators to make it easier to share lessons learned Exchange research learning between CCS and other geo-energy disciplines The workshop outcomes were intended to identify of opportunities for collaboration and development of outline proposals to advance CCS and geo-energy research through practical experience and demonstrations. Workshop invitees included policy makers, demonstration project representatives, academics and pilot project operators. A total of 75 delegates attended, who represented 46 organisations including research institutions, industry (national, multinational and suppliers), global and national CCS networks and trade associations (see attached delegate list – Appendix 1), and a government representative from UK DECC. Delegates were from 13 countries worldwide

    Bistable Gradient Networks II: Storage Capacity and Behaviour Near Saturation

    Full text link
    We examine numerically the storage capacity and the behaviour near saturation of an attractor neural network consisting of bistable elements with an adjustable coupling strength, the Bistable Gradient Network (BGN). For strong coupling, we find evidence of a first-order "memory blackout" phase transition as in the Hopfield network. For weak coupling, on the other hand, there is no evidence of such a transition and memorized patterns can be stable even at high levels of loading. The enhanced storage capacity comes, however, at the cost of imperfect retrieval of the patterns from corrupted versions.Comment: 15 pages, 12 eps figures. Submitted to Phys. Rev. E. Sequel to cond-mat/020356

    Bounded Representations of Interval and Proper Interval Graphs

    Full text link
    Klavik et al. [arXiv:1207.6960] recently introduced a generalization of recognition called the bounded representation problem which we study for the classes of interval and proper interval graphs. The input gives a graph G and in addition for each vertex v two intervals L_v and R_v called bounds. We ask whether there exists a bounded representation in which each interval I_v has its left endpoint in L_v and its right endpoint in R_v. We show that the problem can be solved in linear time for interval graphs and in quadratic time for proper interval graphs. Robert's Theorem states that the classes of proper interval graphs and unit interval graphs are equal. Surprisingly the bounded representation problem is polynomially solvable for proper interval graphs and NP-complete for unit interval graphs [Klav\'{\i}k et al., arxiv:1207.6960]. So unless P = NP, the proper and unit interval representations behave very differently. The bounded representation problem belongs to a wider class of restricted representation problems. These problems are generalizations of the well-understood recognition problem, and they ask whether there exists a representation of G satisfying some additional constraints. The bounded representation problems generalize many of these problems

    Quantum Dot Imaging Agents: Haematopoietic Cell Interactions and Biocompatibility

    Get PDF
    Quantum dots (QDs) are semi-conducting nanoparticles that have been developed for a range of biological and non-biological functions. They can be tuned to multiple different emission wavelengths and can have significant benefits over other fluorescent systems. Many studies have utilised QDs with a cadmium-based core; however, these QDs have since been shown to have poor biological compatibility. Therefore, other QDs, such as indium phosphide QDs, have been developed. These QDs retain excellent fluorescent intensity and tunability but are thought to have elevated biological compatibility. Herein we discuss the applicability of a range of QDs to the cardiovascular system. Key disease states such as myocardial infarction and stroke are associated with cardiovascular disease (CVD), and there is an opportunity to improve clinical imaging to aide clinical outcomes for these disease states. QDs offer potential clinical benefits given their ability to perform multiple functions, such as carry an imaging agent, a therapy, and a targeting motif. Two key cell types associated with CVD are platelets and immune cells. Both cell types play key roles in establishing an inflammatory environment within CVD, and as such aid the formation of pathological thrombi. However, it is unclear at present how and with which cell types QDs interact, and if they potentially drive unwanted changes or activation of these cell types. Therefore, although QDs show great promise for boosting imaging capability, further work needs to be completed to fully understand their biological compatibility

    Future shock: Ocean acidification and seasonal water temperatures alter the physiology of competing temperate and coral reef fishes

    Get PDF
    Climate change can directly (physiology) and indirectly (novel species interactions) modify species responses to novel environmental conditions during the initial stages of range shifts.Whilst the effects of climate warming on tropical species at their cold-water leading ranges are well-established, it remains unclear how future seasonal temperature changes, ocean acidification, and novel species interactions will alter the physiology of range-shifting tropical and competing temperate fish in recipient ecosystems. Here we used a laboratory experiment to examine how ocean acidification, future summer vs winter temperatures, and novel species interactions could affect the physiology of competing temperate and range-extending coral reef fish to determine potential range extension outcomes. In future winters (20 °C+elevated pCO₂) coral reef fish at their cold-water leading edges showed reduced physiological performance (lower body condition and cellular defence, and higher oxidative damage) compared to present-day summer (23 °C+control pCO₂) and future summer conditions (26 °C+elevated pCO₂). However, they showed a compensatory effect in future winters through increased long-term energy storage. Contrastingly, co-shoaling temperate fish showed higher oxidative damage, and reduced short-term energy storage and cellular defence in future summer than in future winter conditions at their warm-trailing edges. However, temperate fish benefitted from novel shoaling interactions and showed higher body condition and short-termenergy storage when shoaling with coral reef fish compared to same-species shoaling. We conclude that whilst during future summers, ocean warming will likely benefit coral reef fishes extending their ranges, future winter conditions may still reduce coral reef fish physiological functioning, and may therefore slow their establishment at higher latitudes. In contrast, temperate fish species benefit from co-shoaling with smaller-sized tropical fishes, but this benefit may dissipate due to their reduced physiological functioning under future summer temperatures and increasing body sizes of co-shoaling tropical species.Angus Mitchell, Chloe Hayes, David J. Booth, Ivan Nagelkerke

    Projected ocean acidification and seasonal temperature alter the behaviour and growth of a range extending tropical fish

    Get PDF
    OnlinePublClimate-driven invasions of ecosystems by range-extending animals are often mediated by behavioural modifications that increase their chances of establishment in foreign biological communities. This creates novel ecological interactions that can affect the behaviour of native species in recipient ecosystems. However, this question has seldom been addressed in marine systems, in particular with the additive effect of ocean acidification and the mediating effects of seasonal climate variability. Here, we performed a laboratory experiment to evaluate how novel species interactions, ocean acidification, and projected future summer versus winter temperatures could affect the behaviour and growth of a range-extending tropical and co-shoaling temperate fish. Compared to current-day summer temperatures, tropical fish became 4% more active, 90% more aggressive, and increased their growth rates (standard length: +42%) during future summers in their novel poleward ranges, but reduced their aggression by 64%, boldness by 52%, feeding by 45% and growth rates (wet weight: −70%, standard length: −26%) during future winters compared to current-day summer temperatures. Additionally, tropical fish became 3% more active under ocean acidification compared to no ocean acidification. Conversely, temperate fish behaviour was unaffected by climate treatments but their growth rates were > 200% faster under future winter versus current and future summer temperatures. We conclude that projected future winter conditions in temperate ecosystems may reduce the performance of range-extending fishes in temperate fish communities and slow down tropicalisation of higher latitudes.Angus Mitchell, Chloe Hayes, David J. Booth, Ivan Nagelkerke

    Ocean acidification may slow the pace of tropicalization of temperate fish communities

    Get PDF
    Poleward range extensions by warm-adapted sea urchins are switching temperate marine ecosystems from kelp-dominated to barren-dominated systems that favour the establishment of range-extending tropical fishes. Yet, such tropicalization may be buffered by ocean acidification, which reduces urchin grazing performance and the urchin barrens that tropical range-extending fishes prefer. Using ecosystems experiencing natural warming and acidification, we show that ocean acidification could buffer warming-facilitated tropicalization by reducing urchin populations (by 87%) and inhibiting the formation of barrens. This buffering effect of COâ‚‚ enrichment was observed at natural COâ‚‚ vents that are associated with a shift from a barren-dominated to a turf-dominated state, which we found is less favourable to tropical fishes. Together, these observations suggest that ocean acidification may buffer the tropicalization effect of ocean warming against urchin barren formation via multiple processes (fewer urchins and barrens) and consequently slow the increasing rate of tropicalization of temperate fish communities.Ericka O.C. Coni, Ivan Nagelkerken, Camilo M. Ferreira, Sean D. Connell and David J. Boot

    Phenotypic responses in fish behaviour narrow as climate ramps up

    Get PDF
    Natural selection alters the distribution of phenotypes as animals adjust their behaviour and physiology to environmental change. We have little understanding of the magnitude and direction of environmental filtering of phenotypes, and therefore how species might adapt to future climate, as trait selection under future conditions is challenging to study. Here, we test whether climate stressors drive shifts in the frequency distribution of behavioural and physiological phenotypic traits (17 fish species) at natural analogues of climate change ( CO2 vents and warming hotspots) and controlled laboratory analogues (mesocosms and aquaria). We discovered that fish from natural populations (4 out of 6 species) narrowed their phenotypic distribution towards behaviourally bolder individuals as oceans acidify, representing loss of shyer phenotypes. In contrast, ocean warming drove both a loss (2/11 species) and gain (2/11 species) of bolder phenotypes in natural and laboratory conditions. The phenotypic variance within populations was reduced at CO2 vents and warming hotspots compared to control conditions, but this pattern was absent from laboratory systems. Fishes that experienced bolder behaviour generally showed increased densities in the wild. Yet, phenotypic alterations did not affect body condition, as all 17 species generally maintained their physiological homeostasis (measured across 5 different traits). Boldness is a highly heritable trait that is related to both loss (increased mortality risk) and gain (increased growth, reproduction) of fitness. Hence, climate conditions that mediate the relative occurrence of shy and bold phenotypes may reshape the strength of species interactions and consequently alter fish population and community dynamics in a future ocean.Almendra Rodriguez, Dominguez, Sean D. Connell, Ericka O. C. Coni, Minami Sasaki, David J. Booth, Ivan Nagelkerke

    The (LATTICE) QCD Potential and Running Coupling: How to Accurately Interpolate between Multi-Loop QCD and the String Picture

    Full text link
    We present a simple parameterization of a running coupling constant, defined via the static potential, that interpolates between 2-loop QCD in the UV and the string prediction in the IR. Besides the usual \Lam-parameter and the string tension, the coupling depends on one dimensionless parameter, determining how fast the crossover from UV to IR behavior occurs (in principle we know how to take into account any number of loops by adding more parameters). Using a new Ansatz for the LATTICE potential in terms of the continuum coupling, we can fit quenched and unquenched Monte Carlo results for the potential down to ONE lattice spacing, and at the same time extract the running coupling to high precision. We compare our Ansatz with 1-loop results for the lattice potential, and use the coupling from our fits to quantitatively check the accuracy of 2-loop evolution, compare with the Lepage-Mackenzie estimate of the coupling extracted from the plaquette, and determine Sommer's scale r0r_0 much more accurately than previously possible. For pure SU(3) we find that the coupling scales on the percent level for β≥6\beta\geq 6.Comment: 47 pages, incl. 4 figures in LaTeX [Added remarks on correlated vs. uncorrelated fits in sect. 4; corrected misprints; updated references.
    • …
    corecore