9 research outputs found

    Identification of the Actin-Binding Region and Binding to Host Plant Apple Actin of Immunodominant Transmembrane Protein of ‘Candidatus Phytoplasma mali’

    No full text
    ‘Candidatus Phytoplasma mali’ (‘Ca. P. mali’) has only one major membrane protein, the immunodominant membrane protein (Imp), which is regarded as being close to the ancestor of all phytoplasma immunodominant membrane proteins. Imp binds to actin and possibly facilitates its movement in the plant or insect host cells. However, protein sequences of Imp are quite diverse among phytoplasma species, thus resulting in difficulties in identifying conserved domains across species. In this work, we compare Imp protein sequences of ‘Ca. P. mali’ strain PM19 (Imp-PM19) with Imp of different strains of ‘Ca. P. mali’ and identify its actin-binding domain. Moreover, we show that Imp binds to the actin of apple (Malus x domestica), which is the host plant of ‘Ca. P. mali’. Using molecular and scanning force spectroscopy analysis, we find that the actin-binding domain of Imp-PM19 contains a highly positively charged amino acid cluster. Our result could allow investigating a possible correlation between Imp variants and the infectivity of the corresponding ‘Ca. P. mali’ isolates

    A single chain antibody against a viral RNA polymerase (TBSV-BS3-Statice)

    No full text
    Expression of antibodies in plant against essential viral proteins could provide an alternative approach to engineered viral resistance. Engineered single chain Fv antibodies scFV are particularly suitable for expression in plant because of their small size and the lack of assembly requirements. RNA-dependent RNA polymerases (RdRps) function as the catalytic subunit of viral replicases required for the replication of all positive strand RNA viruses. By using Phage technology we selected scFvs from a phage library using purified E.coli expressed TBSV(Tomato bushy stunt virus) replicase as antigen. The scFvs mediated-inhibition of RdRp activity was studied in vitro and in planta. In vitro experiments showed the inhibition of CNV(Cucumber necrosis virus) and TCV(Turnip crinkle virus) RdRp. Transient in planta assays based on agroinfiltration and an infectious clone of TBSV demonstrated the inhibition of the replication of TBSV(Tomato bushy stunt virus). Epitope mapping showed that the selected scFvs target the motif E of RdRp which is involved in template binding.Moreover T1 plants of transgenic lines of N. benthamiana expressing different scFvs either in the cytoplasm or the ER (endoplasmic reticulum) showed a high level of resistance against infection with TBSV and RCNMV(Red clover necrotic mosaic virus) upon inoculation with virus particles. This is the first report that scFvs against a RdRp of a plant viruses can inhibit viral replication in vivo. The resistance is even efficient against viruses belonging to different virus families

    Beyond Destabilizing Activity of SAP11-like Effector of Candidatus Phytoplasma mali Strain PM19

    No full text
    It was shown that the SAP11 effector of different Candidatus Phytoplasma can destabilize some TEOSINE BRANCHES/CYCLOIDEA/PROLIFERATING CELL FACTORs (TCPs), resulting in plant phenotypes such as witches’ broom and crinkled leaves. Some SAP11 exclusively localize in the nucleus, while the others localize in the cytoplasm and the nucleus. The SAP11-like effector of Candidatus Phytoplasma mali strain PM19 (SAP11PM19) localizes in both compartments of plant cells. We show here that SAP11PM19 can destabilize TCPs in both the nucleus and the cytoplasm. However, expression of SAP11PM19 exclusively in the nucleus resulted in the disappearance of leaf phenotypes while still showing the witches’ broom phenotype. Moreover, we show that SAP11PM19 can not only destabilize TCPs but also relocalizes these proteins in the nucleus. Interestingly, three different transgenic Nicotiana species expressing SAP11PM19 show all the same witches’ broom phenotype but different leaf phenotypes. A possible mechanism of SAP11-TCP interaction is discussed

    Identification of the Actin-Binding Region and Binding to Host Plant Apple Actin of Immunodominant Transmembrane Protein of ‘<i>Candidatus</i> Phytoplasma mali’

    No full text
    ‘Candidatus Phytoplasma mali’ (‘Ca. P. mali’) has only one major membrane protein, the immunodominant membrane protein (Imp), which is regarded as being close to the ancestor of all phytoplasma immunodominant membrane proteins. Imp binds to actin and possibly facilitates its movement in the plant or insect host cells. However, protein sequences of Imp are quite diverse among phytoplasma species, thus resulting in difficulties in identifying conserved domains across species. In this work, we compare Imp protein sequences of ‘Ca. P. mali’ strain PM19 (Imp-PM19) with Imp of different strains of ‘Ca. P. mali’ and identify its actin-binding domain. Moreover, we show that Imp binds to the actin of apple (Malus x domestica), which is the host plant of ‘Ca. P. mali’. Using molecular and scanning force spectroscopy analysis, we find that the actin-binding domain of Imp-PM19 contains a highly positively charged amino acid cluster. Our result could allow investigating a possible correlation between Imp variants and the infectivity of the corresponding ‘Ca. P. mali’ isolates

    Producing Plant Virus Patterns with Defined 2D Structure

    No full text
    In nanobiotechnology, viral nanoparticles have come into focus as interesting nano building blocks. In this context, the formation of 2D and 3D structures is of particular interest. Herein, the creation of defined 2D patterns of an icosahedral plant virus, the tomato bushy stunt virus (TBSV), by means of different techniques is reported on: the top-down lithography ebeam and focused ion beam (FIB) as well as the bottom-up fluidic force microscope (FluidFM) approach. The obtained layer structures are imaged by scanning force and scanning electron microscopy. The data show that a defined 2D structure can successfully be created either top down by FIB or bottom up by FluidFM. Electron beam lithography is not able to remove viruses from the substrate under the chosen conditions. FIB has an advantage if larger areas covered with viruses combined with smaller areas without being desired. FluidFM is advantageous if only small areas with viruses are required. A further benefit is that the uncovered areas are not affected. The pattern formation in FluidFM is influenced not only by the spotting parameters, but in particular by the drying process. Deegan and Marangoni effects are shown to play a role if the spotted droplets are not very small

    Identification of Highly Specific scFvs against Total Adiponectin for Diagnostic Purposes

    No full text
    Adiponectin is one of the most abundant adipokines secreted from adipose tissue. It acts as an endogenous insulin sensitizer and plasma concentrations are inversely correlated with obesity and metabolic syndrome. A decrease in plasma adiponectin levels normally indicates increased hormonal activity of the visceral lipid tissue, which is associated with decreased insulin sensitivity. It may therefore be considered a valuable biomarker for elucidating the underlying deteriorations resulting in type 2 diabetes and macrovascular disease. Here we present the use of phage display technology to identify highly specific antibody fragments (scFvs) against adiponectin. The selected scFvs showed highly specific binding to globular and native adiponectin in ELISA tests. By using our phage display technology, we were able to obtain monoclonal antibodies with specific high affinity binding to the target protein in an effective and easy to upscale manner. The selected scFvs against adiponectin can be used for developing immunoassays suitable for use in metabolic syndrome diagnosis and monitoring

    First description of Cryptosporidium bovis in Japan and diagnosis and genotyping of Cryptosporidium spp. in diarrheic pre-weaned calves in Hokkaido

    No full text
    Eighty fecal samples from pre-weaned calves with diarrhea were collected in the Tokachi area in Northern Japan to investigate the prevalence of Cryptosporidium species in such animals. Oocysts from fecal samples collected from each animal were concentrated using sucrose gradient centrifugation. Genomic DNA was extracted from each sample and processed by nested PCR to amplify the partial SSU rRNA gene of Cryptosporidium. Cryptosporidium infections were detected in 75% of the samples. Sequence analysis was performed on all positive samples. Phylogenetic analysis of 33 successfully sequenced isolates of the SSUrRNA PCR products revealed all but one were Cryptosporidium parvum infections. The remaining single case was Cryptosporidium bovis. These findings suggest that C. parvum is prevalent in diarrheic pre-weaned calves and can be a source of cryptosporidial infections for humans and animals in Hokkaido

    Improvement of PCR reaction conditions for site-directed mutagenesis of big plasmids

    No full text
    QuickChange mutagenesis is the method of choice for site-directed mutagenesis (SDM) of target sequences in a plasmid. It can be applied successfully to small plasmids (up to 10 kb). However, this method cannot efficiently mutate bigger plasmids. Using KOD Hot Start polymerase in combination with high performance liquid chromatography (HPLC) purified primers, we were able to achieve SDM in big plasmids (up to 16 kb) involving not only a single base change but also multiple base changes. Moreover, only six polymerase chain reaction (PCR) cycles and 0.5 µl of polymerase (instead of 18 PCR cycles and 1.0 µl of enzyme in the standard protocol) were sufficient for the reaction
    corecore