14 research outputs found

    Potential Degradation and Kinetics of Melanoidin by Using Laccase from White Rot Fungus

    Get PDF
    This study was attempted to use laccase extracted from white rot fungus to remove melanoidin in the ethanol production wastewater. The isolated fungus producing the highest laccase was identified as Megaspororia sp. The highest degradation efficiencies of the purified and crude laccases were 48.00% and 44.60%, respectively. Both degradation kinetics well fit Michaelis-Menten model. The Michaelis constant (Km) and maximum rate of reaction (Vmax) were 0.82% melanoidin and 0.0045% melanoidin h-1 for the degradation by the purified laccase and 0.71% melanoidin and 0.0037% melanoidin h-1 for the degradation by the crude laccase. Turnover number (Kcat) of purified and crude laccases were 0.00023 and 0.00019% melanoidin U-1 h-1, respectively. Catalytic efficiency (Kcat/Km) of purified and crude laccases were 0.00028 and 0.00027 U-1 h-1, respectively. The affinity of the crude laccase was slightly higher because of its non-specificity. Kcat and Kcat/Km of the purified laccase were higher than the crude laccase. Proposed potential degradation result showed that laccase could oxidize CH3, carbonyl groups, haloalkanes (C–H), C–O and C–N bondings which probably caused decolorization of melanoidin in wastewater. Thus, the purified and crude laccases can be used to decolorize melanoidin-containing wastewater from ethanol industries. As the attempt to use purified laccase consumed times and costs especially in purification steps, the crude laccase can be used to degrade color of melanoidin in wastewater with only 3.4% lower than the purified laccase

    A New Deep Learning Model for the Classification of Poisonous and Edible Mushrooms Based on Improved AlexNet Convolutional Neural Network

    No full text
    The difficulty involved in distinguishing between edible and poisonous mushrooms stems from their similar appearances. In this study, we attempted to classify five common species of poisonous and edible mushrooms found in Thailand, Inocybe rimosa, Amanita phalloides, Amanita citrina, Russula delica, and Phaeogyroporus portentosus, using the convolutional neural network (CNN) and region convolutional neural network (R-CNN). This study was motivated by the yearly death toll from eating poisonous mushrooms in Thailand. In this research, a method for the classification of edible and poisonous mushrooms was proposed and the testing time and accuracy of three pretrained models, AlexNet, ResNet-50, and GoogLeNet, were compared. The proposed model was found to reduce the duration required for training and testing while retaining a high level of accuracy. In the mushroom classification experiments using CNN and R-CNN, the proposed model demonstrated accuracy levels of 98.50% and 95.50%, respectively

    A New Deep Learning Model for the Classification of Poisonous and Edible Mushrooms Based on Improved AlexNet Convolutional Neural Network

    No full text
    The difficulty involved in distinguishing between edible and poisonous mushrooms stems from their similar appearances. In this study, we attempted to classify five common species of poisonous and edible mushrooms found in Thailand, Inocybe rimosa, Amanita phalloides, Amanita citrina, Russula delica, and Phaeogyroporus portentosus, using the convolutional neural network (CNN) and region convolutional neural network (R-CNN). This study was motivated by the yearly death toll from eating poisonous mushrooms in Thailand. In this research, a method for the classification of edible and poisonous mushrooms was proposed and the testing time and accuracy of three pretrained models, AlexNet, ResNet-50, and GoogLeNet, were compared. The proposed model was found to reduce the duration required for training and testing while retaining a high level of accuracy. In the mushroom classification experiments using CNN and R-CNN, the proposed model demonstrated accuracy levels of 98.50% and 95.50%, respectively

    Species richness and composition of arbuscular mycorrhizal fungi occurring on eucalypt trees (Eucalyptus camaldulensis Dehnh.) in rainy and dry season

    No full text
    River red gum (Eucalyptus camaldulensis Dehnh.), the most commonly planted eucalypt species globally, has several advantages and is widely used for many purposes, which makes the tree important. Mycorrhizal establishment in eucalyptus has been known for many years, and the benefits of this symbiosis have been commercially explored. The main goal of this research was to assess the diversity and distribution of arbuscular mycorrhizal fungi (AMF) on eucalyptus planted in agricultural fields in the rainy and dry season. Fields were chosen in ten different sites located in four provinces in the northeast of Thailand. Rhizosphere soil and root samples were collected and the number of AMF spores and AMF root colonization were assessed. The number of AMF spores was higher in the rainy season than in the dry season, while AMF root colonization was higher in the dry season than in the rainy season. On the basis of morphological identification of AMF, a total of 35 AMF fungal taxa in eight genera were identified, ten belonging to Acaulospora, one to Dentiscutata, one to Entrophospora, 16 to Glomus, three to Gigaspora, one to Racocetra, two to Scutellospora, and one to Septoglomus. Glomus was the dominant genus followed by Acaulospora. Relative abundance, and frequency of occurrence were higher in the rainy season than in the dry season. Racocetra fulgida was the most common species with a frequency of occurrence of 90% in rainy season, and 80% in dry season. Species richness, Simpson's index of dominance and Shannon-Wiener index of diversity were not significantly different between both seasons

    Rational design and characterization of cell-selective antimicrobial peptides based on a bioactive peptide from Crocodylus siamensis hemoglobin

    No full text
    Abstract Antimicrobial resistance is a growing health concern. Antimicrobial peptides are a potential solution because they bypass conventional drug resistance mechanisms. Previously, we isolated a peptide from Crocodylus siamensis hemoglobin hydrolysate, which has antimicrobial activity and identified the main peptide from this mixture (QL17). The objective of this work was to evaluate and rationally modify QL17 in order to: (1) control its mechanism of action through bacterial membrane disruption; (2) improve its antimicrobial activity; and (3) ensure it has low cytotoxicity against normal eukaryotic cells. QL17 was rationally designed using physicochemical and template-based methods. These new peptide variants were assessed for: (1) their in vitro inhibition of microbial growth, (2) their cytotoxicity against normal cells, (3) their selectivity for microbes, and (4) the mode of action against bacteria using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and confocal microscopy. The results indicate that all designed peptides have more potent antimicrobial efficacy than QL17 and IL15 peptides. However, only the most rationally modified peptides showed strong antimicrobial activity and minimal toxicity against normal cells. In particular, IL15.3 (hydrophobicity of 47% and net charge of + 6) was a potent antimicrobial agent (MIC = 4–12 μg/mL; MBC = 6–25 μg/mL) and displayed excellent selectivity for microbes (cf. human cells) via FACS assays. Microscopy confirmed that IL15.3 acts against bacteria by disrupting the cell membrane integrity and penetrating into the membrane. This causes the release of intracellular content into the outer environment leading to the death of bacteria. Moreover, IL15.3 can also interact with DNA suggesting it could have dual mode of action. Overall, a novel variant of QL17 is described that increases antimicrobial activity by over 1000-fold (~ 5 μg/mL MIC) and has minimal cytotoxicity. It may have applications in clinical use to treat and safeguard against bacteria

    Interaction between Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Growth Promotion and Tuber Inulin Content of Helianthus tuberosus L

    No full text
    Arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB) could interact synergistically because PSB solubilize sparingly available phosphorous compounds into orthophosphate that AMF can absorb and transport to the host plant. Little is known about the interactions between these two groups in terms of promoting Jerusalem artichoke, Helianthus tuberosus L., which is widely planted by farmers because of its high inulin content. Production depends mainly on synthetic fertilizers as source of plant nutrients. This study aimed to isolate and characterize PSB and investigate the effects of co-inoculation of AMF and PSB on plant performance and inulin accumulation. Isolate UDJA102x89-9, identified as Klebsiella variicola (KV), showed phosphate-solubilizing ability and produced high amounts of several organic acids in vitro and of indole-3-acetic acid (IAA). The experiment combined KV and two AMF species (Glomus multisubtensum (GM) and Rhizophagus intraradices (RI)). Co-inoculation of KV with RI, in combination with rock phosphate, showed the largest increases in plant growth and tuber inulin content, compared both to an unfertilized and fertilized control. This result would reveal whether the phosphate solubilization and IAA property of the PSB in vitro played a significant role in changing plant growth and production, and the available P was subsequently taken up and transported to plant roots by AMF. The high combined effect may have the potential for use by farmers in the future as a biofertilizer for inulin production by Helianthus tuberosus L.</p

    Co-Inoculation of an Endophytic and Arbuscular Mycorrhizal Fungus Improve Growth and Yield of Helianthus tuberosus L. under Field Condition

    No full text
    Endophytic fungi (EPF) and arbuscular mycorrhizal fungi (AMF) symbioses can promote the growth and productivity of several types of plants. This work aimed to investigate the effect of co-inoculation of an EPF Exserohilum rostratum NMS1.5 and an AMF Glomus etunicatum UDCN52867 g.5 on the growth and yields of sunchoke (Helianthus tuberosus L.) compared to the effects of full-dose and half-dose chemical fertilizer (15–15–15) under field conditions. Several plant growth parameters of the co-inoculated plants were significantly higher than the other treatments. Remarkably, such an effect was relatively equal to that of the full-dose chemical fertilizers. Moreover, the co-inoculation of EPF and AMF significantly improved the tuber yield production, even better than the use of a chemical fertilizer. This is the first report to show that plant growth promoting effects of the co-inoculation of EPF and AMF were exceptionally greater than those of the chemical fertilizer. Therefore, our EPF and AMF could potentially be used as a biofertilizer for promoting the growth and yield of sunchoke in the fields

    The Potential of Endophytic Fungi for Enhancing the Growth and Accumulation of Phenolic Compounds and Anthocyanin in Maled Phai Rice (<i>Oryza sativa</i> L.)

    No full text
    Rice (Oryza sativa L.) is one of the most popular cereal crops, being consumed by almost half of the world’s population. Among several cultivars widely distributed in Thailand, Maled Phai is a Thai pigmented-upland rice with exceptionally high nutritional value and high demand in the local Thai market. This study aimed to investigate the feasibility of producing plant growth-promoting properties (PGP) and enhancing the accumulation of phytochemicals in Maled Phai rice seeds of endophytic fungi isolated from upland black rice. Among a total of 56 isolates, the 4 most effective PGP isolates were identified as Trichoderma zelobreve PBMP16, Talaromyces pinophilus PBMP28, Aspergillus flavus KKMP34, and Trichoderma sp. PBMP4 based on their morphological characteristics and multigene (ITS, rpb2, tef-1, CaM, and BenA) phylogenetic analyses. These four endophytic fungi could promote plant growth parameters under greenhouse conditions. Outstandingly, upland rice inoculated with Tr. zelobreve PBMP16 had a significant increase in total seed weight, root length, phenolic compounds, anthocyanin, antioxidants, and N uptake, which were higher than those of the noninoculated control, and even better than the chemical fertilizer. Overall, this report shows that endophytic fungi efficiently promoted growth and increased the phenolic compounds, anthocyanin, and antioxidants of Maled Phai rice
    corecore