4 research outputs found

    Modular engineering of synthetic glycolytic pathways in Saccharomyces cerevisiae

    No full text
    Already for millennia, microbial fermentation is used for the production of dairy products, alcoholic beverages and bread. In the last decades, the field of biotechnology has tremendously expanded and nowadays, a wide range of compounds ranging from biofuels to chemicals and pharmaceuticals is produced using microbial cell factories. The development of genetic engineering tools has greatly contributed to this rapid development. Catalysing the conversion of renewable carbohydrate feedstocks into fuels and chemicals, microbial cell factories offer a sustainable alternative to fossil resources-based production, and thereby contribute to reduce greenhouse gas emissions. The yeast Saccharomyces cerevisiae plays an important role in industrial biotechnology. Its popularity for applied research and industrial production can be attributed to several factors as its fast fermentative metabolism, its tolerance to low pH, high sugar and alcohol concentrations and its genetic tractability. S. cerevisiae possesses one of the best furbished molecular toolboxes, which makes it possible to assemble complex heterologous pathways, as was recently illustrated by the successful biosynthesis of opioids in yeast. Despite this great progress, extensive genetic remodelling of native pathways remains challenging. This can largely be explained by the high genetic redundancy present in the yeast genome, in which multiple genes encode proteins with redundant functions, and by the fact that the genes belonging to a pathway are scattered over the entire genome. The goal of this thesis was to design, set up and validate a strategy aiming at facilitating the remodelling of (essential) pathways, based on simplifying and reorganizing the yeast genome. The starting point of this research is the central carbon metabolism and in particular, as proof of concept, the glycolytic pathway.BT/Industrial Microbiolog

    The Genetic Makeup and Expression of the Glycolytic and Fermentative Pathways Are Highly Conserved Within the Saccharomyces Genus

    Get PDF
    The ability of the yeast Saccharomyces cerevisiae to convert glucose, even in the presence of oxygen, via glycolysis and the fermentative pathway to ethanol has played an important role in its domestication. Despite the extensive knowledge on these pathways in S. cerevisiae, relatively little is known about their genetic makeup in other industrially relevant Saccharomyces yeast species. In this study we explore the diversity of the glycolytic and fermentative pathways within the Saccharomyces genus using S. cerevisiae, Saccharomyces kudriavzevii, and Saccharomyces eubayanus as paradigms. Sequencing data revealed a highly conserved genetic makeup of the glycolytic and fermentative pathways in the three species in terms of number of paralogous genes. Although promoter regions were less conserved between the three species as compared to coding sequences, binding sites for Rap1, Gcr1 and Abf1, main transcriptional regulators of glycolytic and fermentative genes, were highly conserved. Transcriptome profiling of these three strains grown in aerobic batch cultivation in chemically defined medium with glucose as carbon source, revealed a remarkably similar expression of the glycolytic and fermentative genes across species, and the conserved classification of genes into major and minor paralogs. Furthermore, transplantation of the promoters of major paralogs of S. kudriavzevii and S. eubayanus into S. cerevisiae demonstrated not only the transferability of these promoters, but also the similarity of their strength and response to various environmental stimuli. The relatively low homology of S. kudriavzevii and S. eubayanus promoters to their S. cerevisiae relatives makes them very attractive alternatives for strain construction in S. cerevisiae, thereby expanding the S. cerevisiae molecular toolbox.BT/Industrial Microbiolog

    Full humanization of the glycolytic pathway in Saccharomyces cerevisiae

    No full text
    Although transplantation of single genes in yeast plays a key role in elucidating gene functionality in metazoans, technical challenges hamper humanization of full pathways and processes. Empowered by advances in synthetic biology, this study demonstrates the feasibility and implementation of full humanization of glycolysis in yeast. Single gene and full pathway transplantation revealed the remarkable conservation of glycolytic and moonlighting functions and, combined with evolutionary strategies, brought to light context-dependent responses. Human hexokinase 1 and 2, but not 4, required mutations in their catalytic or allosteric sites for functionality in yeast, whereas hexokinase 3 was unable to complement its yeast ortholog. Comparison with human tissues cultures showed preservation of turnover numbers of human glycolytic enzymes in yeast and human cell cultures. This demonstration of transplantation of an entire essential pathway paves the way for establishment of species-, tissue-, and disease-specific metazoan models.BT/Industrial MicrobiologyBT/Environmental Biotechnolog

    Design and Experimental Evaluation of a Minimal, Innocuous Watermarking Strategy to Distinguish Near-Identical DNA and RNA Sequences

    No full text
    The construction of powerful cell factories requires intensive and extensive remodelling of microbial genomes. Considering the rapidly increasing number of these synthetic biology endeavors, there is an increasing need for DNA watermarking strategies that enable the discrimination between synthetic and native gene copies. While it is well documented that codon usage can affect translation, and most likely mRNA stability in eukaryotes, remarkably few quantitative studies explore the impact of watermarking on transcription, protein expression, and physiology in the popular model and industrial yeast Saccharomyces cerevisiae. The present study, using S. cerevisiae as eukaryotic paradigm, designed, implemented, and experimentally validated a systematic strategy to watermark DNA with minimal alteration of yeast physiology. The 13 genes encoding proteins involved in the major pathway for sugar utilization (i.e., glycolysis and alcoholic fermentation) were simultaneously watermarked in a yeast strain using the previously published pathway swapping strategy. Carefully swapping codons of these naturally codon optimized, highly expressed genes, did not affect yeast physiology and did not alter transcript abundance, protein abundance, and protein activity besides a mild effect on Gpm1. The markerQuant bioinformatics method could reliably discriminate native from watermarked genes and transcripts. Furthermore, presence of watermarks enabled selective CRISPR/Cas genome editing, specifically targeting the native gene copy while leaving the synthetic, watermarked variant intact. This study offers a validated strategy to simply watermark genes in S. cerevisiae.BT/Industrial MicrobiologyOLD BT/Cell Systems EngineeringPattern Recognition and Bioinformatic
    corecore