11 research outputs found

    General information

    No full text
    Contains the overview Bill of Material

    SONARLOGGER - Design Files

    No full text
    Long-Term Autonomous Sonar Logge

    Software

    No full text
    Software related to the Sonarlogge

    Battery Pack

    No full text
    Mechanical and electrical design files for the battery pack of the Sonarlogge

    Sonarlogger: Enabling long-term underwater sonar observations

    No full text
    Coastal seas are under increasing pressure from extreme weather events and sea level rise, resulting in impacts such as changing hydrodynamic conditions, coastal erosion, and marine heat waves. To monitor changes in coastal marine habitats, such as reefs and macrophytes meadows, which add to the resilience of our coasts, consistent, medium- to long-term seafloor observations are needed. This project aims to deliver repeated, high-frequency sonar surveys on a stationary seabed mooring of a specific target area over a period of up to several months. A new stand-alone subsea system, the Sonarlogger, based on a battery pack, low-power logger and a high-resolution scanning sonar, was developed. It allows for long-term deployments with a customisable battery pack, WI-FI download and configurable sleep state. The system has been tested for over 130 days in dynamic coastal environments off the Belgian coast. Combined with auxiliary sensors, such as for measuring currents, waves and turbidity, this system enables comprehensive studies of morphologic changes and changing benthic ecosystems. Moreover, this system has the capacity to provide measurements of coastal environments during storms, where conventional systems may fall short, providing insights into event-based changes of the seafloor

    A mobile observatory powered by sun and wind for near real time measurements of atmospheric, glacial, terrestrial, limnic and coastal oceanic conditions in remote off-grid areas

    No full text
    Climate change is rapidly altering the Arctic environment. Although long-term environmental observations have been made at a few locations in the Arctic, the incomplete coverage from ground stations is a main limitation to observations in these remote areas. Here we present a wind and sun powered multi-purpose mobile observatory (ARC-MO) that enables near real time measurements of air, ice, land, rivers, and marine parameters in remote off-grid areas. Two test units were constructed and placed in Northeast Greenland where they have collected data from cabled and wireless instruments deployed in the environment since late summer 2021. The two units can communicate locally via WiFi (units placed 25 km apart) and transmit near-real time data globally over satellite. Data are streamed live and accessible from (https://gios.org). The cost of one mobile observatory unit is c. 304.000€. These test units demonstrate the possibility for integrative and automated environmental data collection in remote coastal areas and could serve as models for a proposed global observatory system
    corecore